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Abstract

Efficient evaluation of a network architecture
drawn from a large search space remains a key
challenge in Neural Architecture Search (NAS).
Vanilla NAS evaluates each architecture by train-
ing from scratch, which gives the true perfor-
mance but is extremely time-consuming. Re-
cently, one-shot NAS substantially reduces the
computation cost by training only one supernet-
work, a.k.a. supernet, to approximate the perfor-
mance of every architecture in the search space
via weight-sharing. However, the performance
estimation can be very inaccurate due to the co-
adaption among operations (Bender et al., 2018).
In this paper, we propose few-shot NAS that uses
multiple supernetworks, called sub-supernet, each
covering different regions of the search space to
alleviate the undesired co-adaption. Compared
to one-shot NAS, few-shot NAS improves the
accuracy of architecture evaluation with a small
increase of evaluation cost. With only up to 7
sub-supernets, few-shot NAS establishes new So-
TAs: on ImageNet, it finds models that reach
80.5 top-1 at 600 MB FLOPS and 77.5 top-1 at
238 MFLOPS; on CIFAR10, it reaches 98.72 top-
1 without using extra data or transfer learning.
In Auto-GAN, few-shot NAS outperforms the
previous published results by up to 20%. Ex-
tensive experiments show that few-shot NAS sig-
nificantly improves various one-shot methods, in-
cluding 4 gradient-based and 6 search-based meth-
ods on 3 different tasks in NASBENCH-201 and
NasBench1-shot-1.

1. Introduction
Neural Architecture Search (NAS) has attracted lots of in-
terests over the past few years (Zoph et al., 2018; Tan et al.,
2019; Baker et al., 2017). Using NAS, many deep learning
tasks (Yukang Chen, 2019; Gong et al., 2019; Liu et al.,
2019a; Wang et al., 2019b;a) improve their performance
without human tuning. vanilla NAS requires a tremendous
amount of computational costs (e.g., thousands of GPU
hours) in order to find a superior neural architecture (Zoph
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Figure 1. Few-shot NAS is a tradeoff between the vanilla NAS
and one-shot NAS that intends to maintain accurate evaluations in
vanilla NAS and the speed advantages of one-shot NAS.

et al., 2018; Baker et al., 2017; Real et al., 2019), most of
which is due to evaluating new architecture proposals by
training them from scratch. To reduce the cost, one-shot
NAS (Pham et al., 2018; Liu et al., 2019b) proposes to train
a single supernet that represents all possible architectures
in the search space. With supernet, the performance of ar-
chitecture can be approximately evaluated by inheriting the
corresponding weights from the supernet without training,
reducing the search cost to just a few days (hours).

However, one-shot NAS suffers from degraded search per-
formance due to the inaccurate predictions from the su-
pernet. On NASBench-201, the best reported Kendall’s
Tau (Kendall., 1938) (a measurement of rank correlation)
between the performance predicted from a supernet and the
true performance is only 0.5748 (Yiming Hu, 2020). Other
works also have explicitly shown using supernet degrades
the final performance due to the inaccurate performance
predictions. For example, (Yu et al., 2019b) observes that,
without using the supernet, the average performance of NAS
algorithms such as ENAS and NAO is 1% higher than us-
ing it on NASBench-101, and they also conclude that the
supernet never produces the true ranking. Besides, many
works (Bender et al., 2018; Yu et al., 2020; Luo et al., 2018;
Dong & Yang, 2020; Luo et al., 2020) also show that there
is a non-trivial performance gap between the architectures
found by one-shot NAS and vanilla NAS. Being consistent
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Figure 2. (a) masking supernet to a specific architecture. (b) the
motivation of using few-shot NAS to alleviate the co-adaption
impact. After splitting on edge a, supernet ΩB exclusively predicts
architectures in ΩB , so does supernet ΩC .

with the analysis in (Yu et al., 2019b), the main reason is that
the performance predicted by the supernet has a low corre-
lation with the true performance. As an example, Section 2
shows that inaccurate performance prediction by supernet
biases the search towards a wrong direction and hurts both
the efficiency and the final results.

In this work, we propose few-shot NAS that uses multiple
supernets in the architecture search. Instead of having one
supernet covering the entire search space, which may be be-
yond its capacity and suffer from the co-adaption effect from
the compound edges, using multiple supernets effectively
addresses these issues by having each supernets modeling
one part of the search space and by reducing the number of
compound edges. We did a proof-of-concept in Fig. 3 to
verify the idea.

To partition the search space, we recursively split the com-
pound edges on the supernet. Figure 2 shows an exemplar
search tree: the root represents the entire search space Ω
(i.e., all possible network operations), and leaves represent
actual architectures in Ω. Moving down along one edge
dissect one compound edge into several supernets covering
different parts of Ω. Although few-shot NAS increases the
number of supernets, supernets can be trained efficiently by
using a cascade of transfer learning: first, the root super-
net is trained, then the weights of the root are inherited to
its children as initialization and fine-tuned, and so on. In
this manner, we construct a collection of supernets, each of
which is responsible for a region of the search space. Please
refer to section 3 for the methodology details.

With only 5 sub-supernets, we show that our few-shot
NAS greatly improved many existing NAS algorithms on
NASBENCH-201 (Dong & Yang, 2020) and several popu-
lar deep learning tasks in Section 4. Particularly, with our
few-shot NAS, we found SOTA efficient models that demon-
strate 80.5 top-1 at 600 MB FLOPS and 77.5 top-1 at 238
MFLOPS on ImageNet, and 98.72 top-1 on CIFAR-10 with-
out using extra data or transferring weights from a network

（b）Search performance using
regularized evolution

（a）Ground truth vs predicted accuracy

vanilla NAS v.s. predicted performance from one-shot NAS and few-shot NAS

#Supernets 1 6 36 216 1296
Kendall Tau 0.013 0.12 0.26 0.63 1.0
（c）Rank correlations(Kendall Tau) for different numbers of supernets

Figure 3. (a) Using multi-supernets clearly improves the correla-
tion and (c) provides the correlation score (Kendall Tau) at different
numbers of supernets in (a); (b) shows the improved performance
predictions result in better performance on NAS.

pre-trained on ImageNet. Moreover, by re-using the same
search code from AUTOGAN (Gong et al., 2019), few-shot
NAS also improved the results in (Gong et al., 2019), from
12.42 to 10.73 in FID score.

2. Background and Motivation
The negative impact of co-adaption of operations from a
compound edge was first identified by Bender et al (Bender
et al., 2018); and they show that the compound operations on
an edge of the supernet can degrade the correlation between
the estimated performance from a supernet and the true
performance from training-from-scratch. While Bender et
al primarily focused on using drop path or dropout to ensure
a robust supernet for performance prediction, our method
was motivated by the following observation on one-shot
NAS and vanilla NAS.

One-shot NAS uses a supernet to predict the performance of
a specific architecture by deactivating the extra edges w.r.t a
target architecture on the supernet via masking (Fig. 2(a)),
then perform evaluations using the masked supernet. There-
fore, we can view supernet as a representation of search
space Ω, and by masking, supernet can transform to any
architectures in Ω. This also implies we can enumerate all
the architectures in Ω by recursively splitting every com-
pound edge in a supernet. Fig. 2(b) illustrates the splitting
process, the root is the supernet and leaves are individual
architectures in the search space Ω; the figure illustrates the
case of splitting the compound edge a, and the recursively
split follows similar procedures on all compound edges. In
Fig. 2(b), one-shot NAS is the fastest but the most inaccu-
rate in evaluations, while vanilla NAS is the most accurate
in evaluations but the slowest. However, the middle ground,
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Table 1. The definition of notations used through the paper.
Ω the whole architecture space A an architecture in the architecture space m number of operations in the architecture space
S supernet Ni the ith node in the architecture space n number of nodes in the architecture space
Ω

′
a sub-region of the whole architecture space Eij the mixture operations between node i and j W weights of neural network

SΩ
′

a sub-supernet f(A) the evaluation of A f(SA) the evaluation of A by supernet

i.e. using multiple supernets, between one-shot NAS and
vanilla NAS remains unexplored.

In a supernet, the effect of co-adaption results from com-
bined operations on edges; therefore the evaluation of
vanilla NAS is the most accurate. Based on this logic, it
seems using several sub-supernets is a reasonable approach
to alleviate the co-adaption effect by dissecting a compound
edge into several separate sub-supernets that take charge
of different sub-regions of the search space. For example,
Fig. 2(b) shows few-shot NAS eliminates one compound
edge a after splitting, resulting in two supernets for ΩB

and ΩC , respectively. So, the predictions from resulting
sub-supernet are free from the co-adaption effects from the
split compound edge a.

We designed a controlled experiment to verify the assump-
tion that using multi-supernets improves the performance
prediction. First, we designed a search space having 1296 ar-
chitectures, and trained each architecture toward the conver-
gence to collect the final evaluation accuracy as the ground
truth. Then we split the one-shot version of supernet into 6,
36, 216 sub-supernets following the procedures in Fig. 2(b).
Finally, we trained each supernet with the same training
pipeline in (Bender et al., 2018), and compared the pre-
dicted 1296 architecture performance to the ground truth
using 1 (one-shot NAS), 6, 36, 216 supernets. Fig. 3 vi-
sualizes the results, and it indicates using multi-supernets
significantly improves the correlation between predicted
performance and the ground truth. Specifically, in Fig. 3(c)
the Kendall’s Tau (Kendall., 1938) ranking correlation of
using 1 supernet (one-shot NAS), 6 supernets, 36 supernets,
216 supernets are 0.013, 0.12, 0.26, 0.63, respectively. As
a result, the search algorithm takes fewer samples to find
better networks due to more accurate performance predicted
from supernets (Fig. 3(b)).

In sec 4, we conducted extensive experiments on various
applications to ensure the proposed idea will generalize to
other domains, including image recognition, language mod-
eling, and image generation using Generative Adversarial
Network (GAN). While all the experiments suggest few-shot
NAS is an effective approach, the proposed splitting process
indicates the number of supernets exponentially increases
with the number of splits, rendering new computation chal-
lenges. In the methodology section, we introduce a cascade
of transfer learning to speed up the supernet training. Please
refer to sec. 3 for details.

3. Methodology
In designing few-shot NAS, we answer the following several
key questions: (i) how to divide the search space represented
by the one-shot model to sub-supernets and how to choose
the number of sub-supernets given a search time budget
(Section 3.1)? (ii) how to reduce the training time of mul-
tiple sub-supernets (Section 3.2)?; We also describe how
to integrate few-shot NAS with existing NAS algorithms in
Section 3.3 and Section 3.4.

3.1. Design of Split Strategy

𝑵𝟎 𝑵𝟏 𝑵𝒏
𝑬𝟎𝟏

𝑬𝟎𝒏

𝑬𝟏𝒏

Figure 4. A generic architecture space.

Our empirical observation from Section 2 can be summa-
rized as following: the evaluation f(SΩk

A ) of an architecture
A using a sub-supernet SΩk

is closer to the true accuracy
f(A) as Ωk gets smaller, i.e., deeper in the tree. How-
ever, the prediction improvement for A diminishes with any
sub-region Ωp smaller than sub-region Ωq where A ∈ Ωq.
Furthermore, the time to split the initial architecture space
Ω grows exponentially with tree depth. In short, the ideal
split would be determined based on individual architecture
and find the sub-supernet at the shallowest tree depth.

Definition of a Generic NAS Space. Before we describe
our split strategy, we first define a generic NAS space that
is compatible with one-shot NAS. We use this architecture
space for introducing some necessary concepts that will be
used throughout the paper. The whole architecture space Ω
is represented by a directed acyclic graph (DAG) shown in
Figure 4. Each node denotes a latent state, e.g., feature maps
in CNNs, and each edge represents a mixture of operations.
We consider an architecture space with n nodes and m
operations. Each node i is denoted as Ni where i ∈ [1,
n]; Eij represents a set of m edges that connects node Ni

and Nj , where m denotes the number of operations. Any
architecture candidate that can be found in the space has
only one edge in Eij . In other words, there is exactly one
operation from Ni to Nj in any architecture candidate. In
addition, an available architecture at least has one edge from
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Table 2. Rank correlation analysis using Kendall’s Tau (Kendall.,
1938) for different split strategies.

#split edges #Supernet Mean Std.

1 5 0.653 0.012

2 25 0.696 0.016

3 125 0.752 0.018

its predecessor node.

Split Procedure Analysis. Given a search space, e.g., one
that was depicted in Figure 4, the supernet with m opera-
tions and n nodes can be split into a total of mn(n−1)/2 ar-
chitectures by all n(n−1)

2 edges. Training all mn(n−1)/2 ar-
chitectures, as done by the vanilla NAS, is time-consuming
but can provide accurate rank information. To evaluate the
impact of edge splitting on ranking architectures, we cal-
culate the Kendall’s Tau for different splitting strategies by
leveraging the NASBENCH-201 (more details of this dataset
in Section 4.1).

Specifically, we take the same search space used by
NASBENCH-201 with 5 operation types and 4 nodes and
split it in a total of 6, 15, and 20 ways by splitting 1, 2, and
3 edges, respectively. For each split, we train a total of 5k

sub-supernets where k ∈ [1, 2, 3]. In all, we train a total
of 2905 sub-supernets to convergence for calculating the
Kendall Tau for each split.

Table 2 shows the rank correlation when splitting with dif-
ferent numbers of edges. First, similar to what we have
observed in Section 2, increasing the number of split edges
leads to a higher rank correlation. Second, given the same
number of edges to split, the exact choice of which edge
to split has negligible impact on the rank correlation as in-
dicated by the low standard deviation. Therefore, we can
randomly choose which edge(s) to split and focus on how
many edge(s) to split. In this work, we pre-define a training
time budget T . If the total training time of supernet and all
currently trained sub-supernets exceeds T , we will stop the
split to avoid training more sub-supernets.

3.2. Transfer Learning

Using the progressive split strategy, the number of sub-
supernets grows exponentially with the number of nodes
n. Directly training all the resulting sub-supernets can be
computationally intractable and also goes against the in-
sight of one-shot NAS. In this section, we describe how we
use a transfer learning technique to accelerate the training
procedure of sub-supernets.

Similar to how an architecture candidate A inherits weights

WA from the supernet weightsWS , we allow a sub-supernet
SΩ

′

to inherit weights from its parent sub-supernet. For ex-
ample, in Figure 2(b), after training the supernet of ΩA, the
supernet of ΩB and ΩC can inherit the weights from shared
operations in supernet of ΩA as initialization and then start
training. By using transfer learning, each sub-supernet only
needs very small epochs to converge compared to training
from scratch.

3.3. Integration with Gradient-based Algorithms

Overview with Gradient-based NAS. Gradient-based
algorithms work on a continuous search space, which can be
converted from the DAG. Gradient-based algorithms treat
the NAS as a joint optimization problem where both the
weight and architecture distribution parameters are opti-
mized simultaneously by training (Liu et al., 2019b). In
other words, gradient-based algorithms are designed for and
used with one-shot NAS.

To use gradient-based algorithms with our few-shot NAS,
we first train the supernet until it converges. Then, we split
the supernet S to several sub-supernets as described in Sec-
tion 3.1 and initialize these sub-supernets with weights and
architecture distribution parameters transferred from their
parents. Next, we train these sub-supernets to converge and
repeat the above steps if the predefined search time budget
has not been depleted. Lastly, we choose the sub-supernet
SΩ

′

with the lowest validation loss from all the converged
sub-supernets, and pick the best architecture A∗ from the
SΩ

′

based on the architecture distribution parameters.

3.4. Integration with Search-based Algorithms

Overview. Search-based algorithms can work with both
one-shot and vanilla NAS. To start, search-based algorithms
often need to pick the first few architectures. Then search-
based algorithms evaluate the performance of these archi-
tectures either through training, in the case of vanilla NAS,
or evaluating by a pre-trained supernet, in the case of one-
shot NAS. For vanilla NAS, it is not strictly necessary to
train these architectures to converge, and one can use early
stopping to obtain an intermediate result. After warm-up,
search-based algorithms will sample the next architecture
A from the search space based on its previous architecture,
until an architecture with satisfiable performance, e.g., test
accuracy, is found.

To use search-based algorithms with our few-shot NAS, we
will first train a number of sub-supernets by using progres-
sive split and transfer learning, similar to what was described
in Section 3.3. These converged sub-supernets will be used
as the basis to evaluate the performance of sampled archi-
tectures. For example, if a sampled architecture A falls into
sub-supernet SΩ

′

, we will evaluate its performance f(SΩ
′

A )
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by inheriting the weightsWSΩ
′ . Once the search algorithms

complete, we will pick the top K architectures with the best
performance empirically and train these architectures to
converge and select the final architecture based on test error.

4. Experiments
To evaluate the performance of few-shot NAS in reducing the
approximation error associated with supernet and in improv-
ing search efficiency of search algorithms, we conducted
two types of evaluations. The first is based on an existing
NAS dataset and the second type is comparing the architec-
tures found by using few-shot NAS to state-of-the-art results
in popular application domains.

We first evaluate the search performance of few-shot NAS in
different NAS algorithms. We use two metrics(search cost
and accuracy) to evaluate search efficiency of DARTS, PC-
DARTS, ENAS, SETN, REA, REINFORCE, HB, BOHB,
SMAC, and TPE (Liu et al., 2019b; Xu et al., 2020; Pham
et al., 2018; Dong & Yang, 2019; Real et al., 2019; Zoph
et al., 2018; Li et al., 2018; Falkner et al., 2018; Hutter et al.,
2011; Bergstra et al., 2012) by one-shot/few-shot models on
NASBENCH-201. We also evaluate the search performance
of few-shot NAS with DARTS, PCDARTS, and ENAS on
NasBench1-shot-1 (Zela et al., 2020b). Then we extend
few-shot NAS to different open domain search spaces and
show that the found architectures significantly outperform
the ones obtained by one-shot NAS. Our found architectures
also reach state-of-the-arts results in CIFAR10, ImageNet,
AutoGAN (Gong et al., 2019), and Penn Treebank.

4.1. Evaluation on NASBENCH-201

We use NASBENCH-201, a public architecture dataset,
which provides a unified benchmark for up-to-date NAS
algorithms (Dong & Yang, 2020). NASBENCH-201 con-
tains all 15625 architectures in the search space, making it
possible to evaluate the efficiency of gradient-based search
algorithms. In contrast, prior datasets such as NASBENCH-
101 (Ying et al., 2019) do not provide all possible ar-
chitectures in their search space. For each architecture,
NASBENCH-201 contains information such as size, train-
ing and test time, and accuracy on CIFAR-10, CIFAR-100,
and ImageNet-16-120. Consequently, NAS algorithms can
leverage information on each architecture without time-
consuming training.

4.1.1. GRADIENT-BASED ALGORITHMS

Methodology. The supernet corresponds to NASBENCH-
201 has five nodes and five operations. Based on the split
method described in Section 3.1, we split one edge in search
space and obtain five sub-supernets. For this experiment, we
did not train sub-supernets with transfer learning described

in Section 3.2. This is to compare anytime performance
between one-shot and few-shot NAS, by keeping the same
training epochs. Due to limit of the computing resource,
we only split one edge in the search space since without
transfer learning, training more sub-supernets exponentially
increases the time cost. We chose a number of recently pro-
posed gradient-based search algorithms including DARTS
and ENAS for evaluating few-shot NAS. We used two met-
rics: (i) test accuracy is obtained by evaluating the final
architecture found by a NAS algorithm; and (ii) search time
describes the total time of search including supernet training
and validation time.

Result Analysis. Figure 5 shows the anytime test accu-
racy of searched models. In the case of training on CIFAR-
10 (first row), when using one-shot NAS, both DARTS and
ENAS were trap in a bad performance region, which is
exactly consistent with the original paper (Dong & Yang,
2020). The main reason caused by this is one-shot NAS
would fall into a sub-optimal region due to inaccurate per-
formance prediction. In contrast, few-shot NAS maintained
a high quality of searched models since multiple supernets
have more accurate performance to guide the search. Addi-
tionally, in the case of PCDARTS and SETN, even though
one-shot NAS was able to eventually find a good architec-
ture, i.e., with more than 90% accuracy, it took 10X more
search epochs than our few-shot NAS. As few-shot NAS took
on average 4.8X of that of one-shot NAS (without transfer
learning) in training additional supernets, this translates to
more than twice search time savings. In short, we show that
by using few-shot NAS, gradient-based algorithms can have
more efficient search, both in terms of found architectures
and the number of search epochs.

4.1.2. SEARCH-BASED ALGORITHMS

Methodology. As described in Section 3.1, we define the
search time budget of few-shot NAS to be less than twice as
that of one-shot NAS. Therefore, we only split the supernet
by the first edge in the first node N1 to five sub-supernets.
For this experiment, we used transfer learning described in
Section 3.2 for training sub-supernets. We ran each search-
based algorithms for 50 times. We chose six different search-
based algorithms including REA, REINFORCE, BOHB ,
HB, SMAC, and TPE. We evaluate the effectiveness of few-
shot NAS by following the training procedure described in
Section 3.4. We used two metrics to evaluate the perfor-
mance of search-based algorithms. We first use ith best
accuracy to denote the best test accuracy after searching
all i architectures. This metric helps to quantify the search
efficiency, as a good search algorithm is expected to find an
architecture with higher test accuracy with fewer samples.
The second metric is total search time which defines the time
for a search algorithm to find the satisfiable architecture(s).
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Figure 5. Anytime accuracy comparison of state-of-the-art gradient-based algorithms on few-shot NAS. Shaded area represents the highest
and lowest values based on five runs.

Table 3. Rank correlation analysis using Kendall’s Tau on
NASBENCH-201 with different methods.

Method Kendall’s Tau Cost(Hours)
Random 0.0022 0

EN2AS (Zhang et al., 2020) 0.378 N/A
One-shot 0.5436 6.8

Angle (Yiming Hu, 2020) 0.5748 N/A
Few-shot(5-supernets) 0.653 10.1
Few-shot(25-supernets) 0.696 18.6

Few-shot(125-supernets) 0.752 31.8

Result Analysis. Figure 6 compares the best accuracy af-
ter searching a certain number of architectures. We first
observe that few-shot NAS was able to find the global opti-
mal architectures in around 3500 samples when using REA,
and 3000 samples when using REINFORCE. Second, we
see that with REA, BOHB, and TPE, few-shot NAS signifi-
cantly improved the search efficiency over one-shot NAS.
Lastly, with REINFORCE, HB, and SMAC, all three NAS
algorithms achieved slightly better search efficiency with
few-shot NAS compared to using one-shot NAS.

Figure 6(g) compares the search time. All search-based
algorithms took three to four orders of magnitude GPU
hours when using vanilla(standard) NAS, compared to both
one-shot NAS and our few-shot NAS. Specifically, few-shot
NAS only took slightly more search time, about 10 hours,
compared to one-shot NAS. Both one-shot and few-shot NAS
finished the search within 24 hours. Finally, we compare
the rank correlation between our few-shot NAS and other
approaches in Table 3. The good correlation achieved by
few-shot NAS indicates its effectiveness in finding higher
accuracy architecture.

4.2. Evaluation on NasBench1-shot-1

We evaluate our few-shot NAS on NasBench1-shot-1 (Zela
et al., 2020b), which is a public neural architecture
dataset similar to NASBENCH-201. Instead of creating
a new search space like NASBENCH-201, NasBench1-
shot-1 enables one-shot search algorithms implementing
on NASBENCH-101 and its search space is consistent with
NASBENCH-101. We split three sup-supernets as our few-
shot models and keep the same setting with NASBENCH-
201.

Result Analysis. Figure 7 shows search results on
NasBench1-Shot-1. DARTS, PCDARTS, and ENAS by
few-shot model can quickly find good architectures, i.e. test
error less than 0.07 while one-shot PCDARTS require near
30 epochs to find an architecture with similar performance.
For all search algorithms except random search by one-shot
models, they took about more than 5X more search epochs
than our few-shot model to find an architecture with similar
accuracy. Therefore, our few-shot NAS improved the search
efficiency both in found architectures and search time.

4.3. Deep Learning Applications

CIFAR-10 in Practice. We chose three state-of-the-art
NAS algorithms, one gradient-based algorithm(DARTs) and
two search-based algorithms including regularized evolution
(REA) and LaNas (Liu et al., 2019b; Real et al., 2019; Wang
et al., 2019a), for evaluating the effectiveness of few-shot
NAS. We also compared our results with the most recent
NAS algorithms listing in table 4. We used the same search
space based on the original DARTS, REA and LaNas papers.

Table 4 compares the search performance. We see that using
DARTS with our few-shot NAS outperformed searching
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（g）Search time

（a）REA （b）BOHB （c）TPE

（d）REINFORCE （e）HB （f）SMAC

Figure 6. Current best accuracy and search time comparison of popular search-based algorithms. All algorithms were ran for 50 times for
one-shot, few-shot and vanilla NAS, respectively.
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Figure 7. Search results on Nasbench1-shot-1. Each search algo-
rithm ran 3 times.

directly with one-shot NAS by 0.43 lower error. Further, the
architecture found with few-shot NAS also matches the state-
of-the-art results on CIFAR-10. Additionally, few-shot NAS
only incurred a 35% search time increase. Similarly, few-
shot NAS also improved the search efficiency of REA upon
one-shot NAS, finding an architecture with 0.21 lower error
with only 16.7% more search time. For LaNas, few-shot
decrease the test error from 1.68 to 1.58 with only 26.7%
extra search time. All of our few-shot searched results
outperform results of other methods in the table with the
same training setup. In short, few-shot NAS improved the

efficiency of existing state-of-the-art search algorithms.

Neural Architecture Search on ImageNet. We selected
two state-of-the-art NAS algorithms working on ImageNet,
including ProxylessNAS and Once-for-All NAS(OFA) (Cai
et al., 2019; 2020). Our few-shot NAS keeps the same
training setup with ProxylessNAS and OFA.

Table 5 compares the search performance. We can see that
our few-shot NAS significantly improved the accuracy and
kept similar FLOPs numbers on both two NAS algorithms
with one-shot model. Our few-shot OFA Net also achieves
the best top1 accuracy compared to the models with different
search methods on the same scales of Flop numbers.

Comparison to AUTOGAN (Gong et al., 2019). AUTO-
GAN was proposed to search for a special architecture called
GAN, which consists of two competing networks. The net-
works, a generator and a discriminator, play a min-max
two-player game against each other. We followed the same
setup described in the AUTOGAN paper. We used Inception
score (IS)(higher is better) and Frchet Inception Distance
(FID) (Salimans et al., 2016)(lower is better) to evaluate
the performance of GAN. Table 6 compares the top three
performing GANs found by both original AUTOGAN and
with using our few-shot NAS. We observe that using few-
shot NAS, the inception score of the best architecture was
improved from 8.55 to 8.63 and the FID was reduced from
12.42 to 10.73. Additionally, the top two architectures found
using few-shot NAS had very close performance, one with
the lowest inception score and the other with the lowest FID.
In short, all three architectures found by few-shot NAS had
better inception score and FID than state-of-the-art results.
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Table 4. Applying few-shot NAS on existing NAS methods on
CIFAR-10 using the NASNet search space. Our results demon-
strate that 1) few-shot NAS consistently improves the final ac-
curacy of various one-shot based NAS methods under the same
setup. Please note we only extend one-shot based DARTS, REA,
and LaNAS by replacing the single supernet with 7 supernets
in their public release; 2) after integrating with multiple super-
nets, few-shot DARTS achieves SOTA 98.72% top-1 accuracy on
CIFAR-10 using the cutout (Devries & Taylor, 2017) and auto-
augmentation (Cubuk et al., 2018). Without auto-augmentation,
few-shot DARTS-Small still consistently outperforms existing
models that have similar parameters.

Method Data Augmentation #Params Err GPU days

NASNet-A (Zoph et al., 2018) cutout 3.3M 2.65 2000
AmoebaNet-B-small (Real et al., 2019) cutout 2.8M 2.50±0.05 3150
AmoebaNet-B-large (Real et al., 2019) cutout 34.9M 2.13±0.04 3150

AlphaX (Wang et al., 2019b) cutout 2.83M 2.54±0.06 1000
NAO (Luo et al., 2018) cutout 3.2M 3.14±0.09 225

DARTS (Liu et al., 2019b) cutout 3.3M 2.76±0.09 1
P-DARTS (Chen et al., 2019) cutout 3.4M 2.5 0.3
PC-DARTS (Xu et al., 2020) cutout 3.6M 2.57±0.07 0.3

Fair-DARTS (Chu et al., 2019b) cutout 3.32M 2.54±0.05 3
BayeNAS (Zhou et al., 2019) cutout 3.4M 2.81±0.04 0.2

CNAS (Lim et al., 2020) cutout 3.7M 2.60±0.06 0.3
MergeNAS (Wang et al., 2020) cutout 2.9M 2.68±0.01 0.6

ASNG-NAS (Akimoto et al., 2019) cutout 3.32M 2.54±0.05 0.11
XNAS (Nayman et al., 2019) cutout + autoaug 3.7M 1.81 0.3

one-shot REA cutout + autoaug 3.5M 2.02±0.03 0.75
one-shot LaNas (Wang et al., 2019a) cutout + autoaug 3.6M 1.68±0.06 3

few-shot DARTS-Small cutout 3.8M 2.31±0.08 1.35
few-shot DARTS-Large cutout 45.5M 1.92±0.08 1.35
few-shot DARTS-Small cutout + autoaug 3.8M 1.70±0.08 1.35
few-shot DARTS-Large cutout + autoaug 45.5M 1.28±0.08 1.35

few-shot REA cutout + autoaug 3.7M 1.81±0.05 0.87
few-shot LaNas cutout + autoaug 3.2M 1.58±0.04 3.8

Table 5. Applying few-shot NAS on existing NAS methods on Im-
ageNet using the EfficientNet search space. Being consistent
with the results on CIFAR-10 in Table. 4, the final accuracy from
few-shot OFA and ProxylessNAS also outperforms their original
one-shot version under the same setting, except for replacing the
single supernet with 5 supernets. Particularly, Few-shot OFA-
Large achieves SoTA 80.5% top1 accuracy at 600M FLOPS.

Method Space #Params #FLOPs Top 1 Acc(%) GPU hours
AutoSlim (Yu & Huang, 2019) Mobile 5.7M 305M 74.2 N/A

MobileNetV3-Large (Howard et al., 2019) Mobile 5.4M 219M 74.7 N/A
MnasNet-A2 (Tan et al., 2019) Mobile 4.8M 340M 75.6 N/A
FBNetV2-L1 (Wan et al., 2020) Mobile N/A 325M 77.2 600

EfficientNetB0 (Tan & Le, 2019) Mobile 5.3M 390M 77.3 N/A
AtomNAS (Mei et al., 2020) Mobile 5.9M 363M 77.6 N/A
few-shot OFA Net-Small Mobile 5.6M 238M 77.50 68

MobileNetV2 (Sandler et al., 2018) Mobile 6.9M 585M 74.7 N/A
ShuffleNet-V2 (Ma et al., 2018) Mobile N/A 590M 74.9 N/A
ProxylessNAS (Cai et al., 2019) Mobile 7.12M 465M 75.1 200

ChamNet (Dai et al., 2019) Mobile N/A 553M 75.4 N/A
RegNet (Radosavovic et al., 2020) Mobile 6.1M 600M 75.5 N/A

OFA Net (Cai et al., 2020) Mobile 9.1M 595M 80.0 40
few-shot ProxylessNAS Mobile 4.87M 521M 75.91 280

few-shot OFA Net-Large Mobile 9.2M 600M 80.50 68

Table 6. Apply few-shot NAS to AutoGAN by only replacing the
supernet with 3 supernets in their public release. Few-shot Auto-
GAN demonstrates up to 20% better performance than the original
one-shot AutoGAN.

Method Inception Score FID Score

ProbGAN(He et al., 2019) 7.75±.14 24.60
SN-GAN(Miyato et al., 2018b) 8.22±.05 21.70±.01

MGAN(Hoang et al., 2018) 8.33±.12 26.7
Improving MMD GAN(Wang et al., 2019c) 8.29 16.21

AutoGAN-top1(Gong et al., 2019) 8.55±.10 12.42
AutoGAN-top2 8.42±.06 13.67
AutoGAN-top3 8.41±.12 13.87

few-shot AutoGAN-top1 8.60±.10 10.73±.10
few-shot AutoGAN-top2 8.63±.09 10.89±.20
few-shot AutoGAN top3 8.52±.08 12.20

PENN TREEBANK in Practice (Marcus et al., 1994).
Lastly, we evaluate few-shot NAS on Penn Treebank (PTB),
a widely-studied benchmark for language models. We used
the same search space and training setup as the original
DARTS to search RNN on PTB. By using few-shot NAS, we
achieved the state-of-the-art test Perplexity of 54.89 with an
overall cost of 1.56 GPU days. In comparison, the original
DARTS found an architecture with worse performance (55.7
test Perplexity) with 1 GPU day.

5. Related Works
Weight-sharing supernet was first proposed as a way to
reduce the computational cost of NAS (Pham et al., 2018).
Centering around supernet, a number of NAS algorithms
including gradient-based (Liu et al., 2019b; Xu et al., 2020;
Dong & Yang, 2019) and search-based (Bender et al., 2018;
Chu et al., 2019a; Guo et al., 2019) were proposed. The
search efficiency of these algorithms is dependent on the
ability of supernet to approximate architecture performance.

To improve the supernet approximation accuracy, Bender
et al. (Bender et al., 2018) proposed a path dropout strat-
egy that randomly drops out weights of the supernet during
training. This approach improves the correlation between
one-shot NAS and individual architecture accuracy by re-
ducing weight co-adaptation. In a similar vein, Guo et
al. (Guo et al., 2019) proposed a single-path one-shot train-
ing by only activating the weights from one randomly picked
architecture in forward and backward propagation. Addi-
tionally, Yu et al. (Yu et al., 2019a) found that training setup
greatly impacts supernet performance and identified useful
parameters and hyper-parameters. Lastly, an angle-based ap-
proach (Zhiyuan Li, 2020; Arora et al., 2019; Carbonnelle &
Vleeschouwer, 2018) was proposed to improve the supernet
approximation accuracy for individual architecture (Yim-
ing Hu, 2020) and was shown to improve the architecture
rank correlation. However, our few-shot models achieved
better rank correlation than this angle-based approach(see
table 3). Our work focuses on reducing the supernet approxi-
mation error by dividing the supernet to a few sub-supernets
to eliminate the co-adaption among supernet operations. As
such, our work is complementary and can be integrated into
the aforementioned work.

6. Conclusion
In this work, we proposed a novel way, few-shot NAS, to
balance the search time and the performance of found ar-
chitecture. Few-shot NAS leverages the search space be-
tween one-shot NAS and vanilla NAS. Our experiments
show that few-shot NAS outperformed both in NAS bench-
mark dataset and different practical application domains.
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A. Additional Notations
We use two additional notations for pseudocode description:
(i) Sid denotes a set of sub-supernets that is split by id
numbers of edges. (ii) Snid denotes the nth sub-supernet in
Sid.

B. End-to-end Pipeline Pseudocode
Below we list the pseudocode for the end-to-end split and
training pipeline in Algorithm 1, the pseudocode for random
split the one-shot model into sub-supernets in Algorithm 2,
and the pseudocode for training (sub-)supernets in Algo-
rithm 3.

Algorithm 1 (Sub)-supernets split and training

1: S0 = {S}
2: define global T ← TIME BUDGET
3: Train(S , NONE)
4: S0 ← S
5: id← 0
6: while total time < T do
7: j ← random(0,#N)
8: i← random(0, j)
9: Sid+1 ← RandomSplit(Sid, Eij)

10: for n = 1→ sizeof(Sid+1) do
11: Train(Snid+1, S ′

id)
12: end for
13: id← id + 1
14: end while

Algorithm 2 RandomSplit(Sid, Eij)

1: Snew ← split Sid to m sub-supernets given m
operations

2: return Snew

Algorithm 3 Train(s, parent)

1: if parent IS NOT NONE then
2: Ws ←Wparent

3: end if
4: While s NOT CONVERGE do
5: forward(s)
6: backward(s)
7: end While

C. Experiment Setup for Section 2
Each architecture was trained for 150 epochs with batch
size of 128. The initial channel is 16. We used the SGD
optimizer with an initial learning rate of 0.025, followed
by a cosine learning rate schedule through the training. We

set the momentum rate to 0.9 and a weight decay of 3 ×
10−4. The training setup of supernet and sub-supernets is
consistent with architecture candidates. These experiments
ran on 50 P100 GPUs.

D. Experiment Setup for Section 4
(Sub-)supernet Training Setup for NASBENCH-201.
Each architecture was trained for 200 epochs with 256 batch
size. The initial channel is 16. We used the SGD optimizer
with an initial learning rate of 0.1, followed by a cosine
learning rate schedule through the training. The momentum
rate was set to 0.9. We used a weight decay of 5 × 10−4

and a norm gradient clipped at 5. Cutout technique was not
used in the training. The supernet training setup is consis-
tent with architecture candidates. For supernet training, we
changed the initial learning rate to 0.025 and total epochs
to 300. The batch size is 128 and the weight decay was
set to 1 × 10−4. Each sub-supernet approximately took
40-50 epochs to converge after transfer learning. For each
NAS algorithm, we used the same setup as described in the
NASBENCH-201 (Dong & Yang, 2020). We used 6 P100
GPUs to train the supernet and 5 sub-supernets.

Search Setup for DARTS on CIFAR-10. We used the
same search space and training setup as described in the
original DARTS paper (Liu et al., 2019b). Specifically, the
available operations in the search space include 3 x 3 and 5
x 5 separable convolutions, 3 x 3 and 5 x 5 dilated separable
convolutions, 3 x 3 max pooling, 3 x 3 average pooling,
identity, and zero. We trained 8 cells using DARTS for
50 epochs, with batch size 64 (for both the training and
validation sets). The initial number of channels was set to
16. Each sub-supernet took 5-20 epochs to be converge. We
used the momentum SGD optimizer with an initial learning
rate of 0.025, followed by a cosine learning rate schedule
through the training. We used a momentum rate of 0.9 and a
weight decay of 3× 10−4. This experiment ran on 10 P100
GPUs for training both supernet and sub-supernets.

We trained the network for 1500 epochs using a batch size
of 128 and use a momentum SGD optimizer with an initial
learning rate of 0.025, followed by a cosine learning rate
schedule through the training. We use weight decay as the
regularization.

Search Setup for DARTs on PTB. The search space
and the training setup of (sub)-supet-nets are identical to
DARTS (Liu et al., 2019b). Concretely, both the embedding
and the hidden sizes were set to 300. We used 6 P100 GPUs
to train both the supernet and 5 (sub)-supet-nets. Each (sub-
)supernet was trained for 50 epochs using SGD without
momentum, with a learning rate of 20. The batch size was
set to 256 and the weight decay was set to 3 × 5−7. We
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Figure 8. Anytime accuracy comparison of state-of-the-art gradient-based algorithms on few-shot NAS for CIFAR-100.

applied a variational dropout of 0.2 to word embeddings,
0.75 to the cell input, and 0.25 to all the hidden nodes. We
also applied a dropout rate of 0.75 to the output layer.

Search Setup for ImageNet (Gong et al., 2019). For
proxylessNas, we exactly keep the same search pipeline
with original paper (Cai et al., 2019), We randomly sample
50,000 images from the training set as a validation set dur-
ing the architecture search. For our few-shot NAS, we split
3 sub-supernets. The (sub)supernets parameters are updated
using the Adam optimizer with an initial learning rate of
0.001. The (sub)supernets is trained on the remaining train-
ing images with batch size 256. For once for all NAS, the
search setup is also consistent with original OFA (Cai et al.,
2020). In specific, we use the same architecture space as
MobileNetV3 (Howard et al., 2019), for supernet training,
we use the standard SGD optimizer with Nesterov momen-
tum 0.9 and weight decay is set to 3 × 10−5. The initial
learning rate is 2.6, and we use the cosine schedule for learn-
ing rate decay. We split 5 sub-supernets. The (sub)supernets
are trained for 180 epochs with batch size 2048 on 64 32G
V100 GPUs.

Search Setup for AutoGAN (Gong et al., 2019). Our
search and training settings were identical to Auto-
GAN (Gong et al., 2019), which followed spectral normal-
ization GAN (Miyato et al., 2018a) when training the (sub-
)-supernets. We split the supernet (shared GAN in (Gong
et al., 2019)) to 3 sub-supernets. The learning rate of both
generator and discriminator were set to 2e−4. We used the
hinge loss and an Adam optimizer. The batch size of dis-
criminator was 64 and the generator was 128. The initial
learning rate was set to 3.5e−4. The AutoGAN searched
for 90 iterations for one supernet. For each iteration, the
shared GAN (supernet) was trained for 15 epochs, and the
controller was trained for 30 steps. After the shared GAN
(supernet) was trained, we transferred the weight to each
sub-supernets and trained them for 12 epochs. We trained
the controller with 30 steps. The discovered architectures
were trained for 50,000 generator iterations. We used 4
P100 GPUs in this experiment.

E. Evaluation of Gradient-based Algorithms
on CIFAR-100

Figure 8 shows the anytime accuracy of running state-of-the-
art gradient-based algorithms on few-shot NAS. We observe
similar trend as shown for CIFAR-10 in Figure 5.

Consistent with fig.5, the anytime CIFAR-100 test accuracy
is shown in fig.8. Based on fig.8, The curve of each algo-
rithms keep a very similar trend with in CIFAR-10. There-
fore, we are able to get a same results with sec.4.1.1. The
few-shot NAS gradient-based algorithms can have more effi-
cient search, both in terms of found architecture and number
of search epochs.

F. One-shot NAS v.s. Few-shot NAS by
Robust DARTS (Zela et al., 2020a)

Table 7. Few-shot Robust DARTS vs. One-shot Robust DARTS
over 4 Search Space

Method Space Top 1 Acc(%)
one-shot s1 96.49
few-shot s1 96.81
one-shot s2 96.22
few-shot s2 96.55
one-shot s3 97.19
few-shot s3 97.28
one-shot s4 95.60
few-shot s4 96.30

We use our few-shot NAS with Robust DARTS searching
architectures over 4 different search spaces defined by origi-
nal paper (Zela et al., 2020a). For table 7, we can see that
the accuracy of architectures searched by our few-shot are
significantly better than one-shot over all 4 search spaces.
Our training setup is strictly same with its original paper.


