
Sync-Switch: Hybrid Parameter Synchronization for
Distributed Deep Learning

Shijian Li, Oren Mangoubi, Lijie Xu† and Tian Guo
Worcester Polytechnic Institute

†State Key Lab of Computer Science, Institute of Software, Chinese Academy of Sciences

Abstract—Stochastic Gradient Descent (SGD) has become the
de facto way to train deep neural networks in distributed clusters.
A critical factor in determining the training throughput and
model accuracy is the choice of the parameter synchronization
protocol. For example, while Bulk Synchronous Parallel (BSP)
often achieves better converged accuracy, the corresponding
training throughput can be negatively impacted by stragglers.
In contrast, Asynchronous Parallel (ASP) can have higher
throughput, but its convergence and accuracy can be impacted by
stale gradients. To improve the performance of synchronization
protocol, recent work often focuses on designing new protocols
with a heavy reliance on hard-to-tune hyper-parameters.

In this paper, we design a hybrid synchronization approach
that exploits the benefits of both BSP and ASP, i.e., reducing
training time while simultaneously maintaining the converged
accuracy. Based on extensive empirical profiling, we devise a
collection of adaptive policies that determine how and when to
switch between synchronization protocols. Our policies include
both offline ones that target recurring jobs and online ones
for handling transient stragglers. We implement the proposed
policies in a prototype system, called Sync-Switch, on top of
TensorFlow, and evaluate the training performance with popular
deep learning models and datasets. Our experiments show that
Sync-Switch achieves up to 5.13X throughput speedup and similar
converged accuracy when comparing to BSP. Further, we observe
that Sync-Switch achieves 3.8% higher converged accuracy with
just 1.23X the training time compared to training with ASP.
Moreover, Sync-Switch can be used in settings when training with
ASP leads to divergence errors. Sync-Switch achieves all of these
benefits with very low overhead, e.g., the framework overhead
can be as low as 1.7% of the total training time.

Index Terms—Distributed deep learning, synchronization pol-
icy design, empirical performance optimization

I. INTRODUCTION

We are witnessing the increasingly widespread adoption
of deep learning in a plethora of application domains. The
unprecedented success of deep learning is, in large part,
powered by rapid model innovations, which in turn critically
depend on algorithms and systems support for training. One
of these innovations, distributed deep learning–training deep
neural networks on a cluster of GPU servers–is increasingly
leveraged to train complex models on larger datasets. In
particular, SGD-based optimization has emerged as the de
facto way to perform distributed training and provides the
basis for parallelizing training jobs, allowing deep learning
practitioners to evaluate different model variants quickly.

However, it is more difficult to achieve good performance
and high-quality training with SGD-based distributed train-
ing, compared to traditional single-node training [1], [2]. A

Tr
ai

ni
ng

 T
hr

ou
gh

pu
t

Converged accuracy

ASP

BSP

SSP, DSSP, 
Group-based

Our work:
Sync-Switch

Fig. 1: Ours vs. prior work on synchronization protocols. Our
work looks to improve both the training time and accuracy simulta-
neously, compared to prior work that trades-off these two metrics.

large number of factors, such as slow servers and network
communication links, can all impact the distributed training
performance [3]–[5]. Of particular importance is how each
cluster node communicates and synchronizes their respective
progress during training, governed by parameter synchroniza-
tion protocols, which has a profound impact on both the model
converged accuracy and training time. Bulk synchronous par-
allel (BSP) [6], a default option for popular frameworks
including TensorFlow, requires each node to synchronize every
iteration. In contrast, asynchronous parallel (ASP) allows
nodes to work at their own pace [7]. However, both distributed
training protocols have their respective limitations, e.g., BSP
is prone to slow down due to workers need to wait for
synchronization while ASP suffers from decreased accuracy
due to stale gradients.

In this work, we explore ways to exploit the benefits of both
BSP and ASP and design a hybrid synchronization approach
Sync-Switch. In contrast to prior work [8]–[11], which often
needs to sacrifice either training throughput or converged accu-
racy, we set out to reduce training time while simultaneously
maintaining the converged accuracy as illustrated in Fig. 1.
Specifically, we propose an empirically-driven methodology—
which we also use to generate a set of policies—that determine
how and when to switch the synchronization protocol. Our
policies, the offline ones that target jobs under normal training
circumstances and the online ones that react to cluster runtime
status, are designed with the key insight of maximizing
the time the GPU servers spend on training asynchronously
without sacrificing the trained model’s accuracy.

Through extensive empirical profiling of distributed training
workload, we demonstrate that our key idea of hybrid syn-
chronization can lead to converged accuracy and training time
benefit compared to using BSP and using ASP, respectively. In
particular, we empirically observe that, while one may need to
perform synchronous training throughout all epochs to achieve

1

ar
X

iv
:2

10
4.

08
36

4v
2 

 [
cs

.D
C

] 
 2

0 
A

pr
 2

02
1



0 20 40 60
Steps (k)

0.6

0.7

0.8

0.9

1.0
A

cc
ur

ac
y

BSP
ASP
Switching 25%
Switching 50%

(a) Test accuracy.

ASP Switching
25%

Switching
50%

BSP
0

50

100

150

200

Tr
ai

ni
ng

 T
im

e 
(m

in
)

(b) Total training time.

Fig. 2: Benefits of synchronization switching. Training ResNet32 on
Cifar-10 using 8 machines, with BSP then ASP, reduces the training
time by up to 63.5% while achieving similar converged accuracy,
compared to training with BSP.

the highest possible training accuracy, only a minimal amount
of synchronous training is needed to achieve a high-quality
test accuracy. Indeed, as shown in Figure 2(a), starting the
training synchronously with BSP and then switching to an
asynchronous protocol achieves almost the same converged
test accuracy compared to training exclusively with BSP.
Furthermore, by spending less time training with BSP (50% of
training workload vs. 25%), the total training time is reduced
by 37.5% (see Section VI-A for detailed methodology).

To determine how and when to use BSP and ASP synchro-
nizations, we develop an empirical-driven methodology that
allows us to derive policies for a given distributed training
workload. Specifically, by comparing the training performance
under different settings, one can derive the first protocol policy
that describes the relative execution order of the synchro-
nization protocols. We found that training with BSP (a more
precise computation method) first and then switching to ASP
(a less precise one) leads to improved training throughput and
similar converged accuracy, compared to training with BSP.
To determine when to use BSP and when to use ASP, we
introduce both online and offline timing policies. Based on
our empirical observation that training longer with BSP does
not improve converged accuracy beyond a knee point, we use
a binary search-based approach to find the optimal switch
timing. Furthermore, to account for transient stragglers, we
devise an online policy that works in tandem with the optimal
timing policy obtained offline. Finally, to properly adjust
hyper-parameters when switching to a new synchronization
protocol, we devise the configuration policies by adapting
prior work and by taking into account factors including the
cluster size and the training stage.

We implement the proposed policies in a prototype system
called Sync-Switch on top of a popular distributed training
framework TensorFlow and evaluate the training performance
under three distributed training setups. Our experiments show
that Sync-Switch achieves up to 5.13X throughput speedup and
similar converged accuracy when comparing to BSP. Further,
we observe that Sync-Switch achieves 3.8% higher converged
accuracy with just 1.23X the training time compared to
training with ASP. Moreover, Sync-Switch can be used in
settings when training with ASP leads to divergence errors.
Sync-Switch is also effective in handling transient stragglers
(nodes that exhibit temporary slowdown), mitigating the po-
tential performance degradation. Furthermore, we quantify the

overhead of using Sync-Switch in terms of offline search cost
and runtime overhead. Specifically, we show that the upfront
search cost can be quickly amortized for jobs with more than
ten recurrences, a very likely scenario given the trial-and-error
nature of deep learning training. Additionally, Sync-Switch
incurs as low as 36 seconds, or about 1.7% of the total training
time, overhead in switching between BSP and ASP protocols.

In summary, we make the following main contributions:
• We propose a methodology and derive policies that govern

hybrid parameter synchronization to improve the training
throughput while simultaneously maintaining high-quality
converged accuracy. The offline policies can be derived for
a given distributed training workload and are particularly
useful for recurring jobs1, while the online policies are
effective in dealing with stragglers that are temporary.

• We implement a prototype system called Sync-Switch, on
top of a popular deep learning framework TensorFlow, that
encapsulates all the adaptive policies. Deep learning practi-
tioners can directly leverage Sync-Switch without modifying
the distributed training scripts. Our code and experiment
data are available in the project GitHub repository: https:
//github.com/cake-lab/Sync-Switch.

• We demonstrate the efficacy of these policies through ex-
periments using popular convolutional neural networks and
datasets for image classification. We show that Sync-Switch
can improve the total training time by up to 5X while
achieving similar test accuracy, compared to training with
BSP. Sync-Switch also achieves 4X improvement on the
time-to-accuracy metric, outperforming prior work that re-
ported a speedup of 1.1X-2X when using protocols SSP and
DSSP [8]. Further, Sync-Switch can effectively circumvent
the performance degradation caused by transient stragglers
under moderate slowdown scenarios.

II. BACKGROUND

A. Distributed Deep Learning

In this work, we target distributed deep learning where mul-
tiple GPU-equipped computing nodes work together to train a
deep learning model by communicating gradients and param-
eters over network. We focus on the more popular approach
data parallelism, where the training data are partitioned and
offloaded to the workers, instead of model parallelism where
models themselves are distributed. When training with data
parallelism, each worker trains on the complete neural network
in steps, which each step corresponds to going through one
mini-batch of data, to update the model parameters.

Further, we focus on parameter server (PS) based architec-
ture that consists of two logical entities: PS and worker. We
choose to collocate PSs and workers, to better exploit compu-
tational resources and to reduce network communication, and
configure the training cluster with equal numbers of PSs and
workers based on prior work [12]. To train a neural network,

1Recurring jobs refer to training jobs with the same deep learning model,
but can be trained with different hyper-parameters, such as hyper-parameter
tuning, or different datasets, such as online learning.

2

https://github.com/cake-lab/Sync-Switch
https://github.com/cake-lab/Sync-Switch


push
gradients

Sync update Sync update

'

Task

Task

'Parameter
Servers

Worker1

Worker2

(a) Bulk Synchronous Parallel (BSP) based training (b) Asynchronous Parallel (ASP) based training

Async
update

Async
update

aggregate 

Task

Task

pull parameters

Fig. 3: Popular distributed parameter synchronization protocols. For BSP, parameter servers use barriers for gradient collection and only
start to update parameters w once all gradients g are aggregated. In contrast, ASP workers push/pull gradients/parameters at their own pace.

a worker will first pull model parameters from all PSs, then
perform the forward and backward propagation computation
on a mini-batch and the current model parameters, and finally
push the computed gradients to all PSs. Depending on the
parameter synchronization protocol in use, the PSs will im-
mediately update the model parameters or wait until receiving
all gradients from all workers.

B. Distributed Parameter Synchronization Protocols
In distributed deep learning, synchronization and coordina-

tion of worker progress (i.e., gradient computation) is achieved
by distributed parameter synchronization protocols [6]–[8],
[11], [13]. There are two popular protocols: Bulk Synchronous
Parallel (BSP) and Asynchronous Parallel (ASP) that differ
in their horizontal scalability, sensitivity to stragglers, and
converged test accuracy. Via an empirical measurement with
different training workloads and cluster sizes, we quantify the
training throughput difference between BSP and ASP as shown
in Figure 4. Given the same experiment setup, training with
ASP can be up to 6.59X faster than with BSP, especially when
stragglers are presented. Our observations align with recent
work [12], [14] and suggest the promise of leveraging ASP to
improve training time.

BSP, as shown in Figure 3(a), is a deterministic scheme
where workers perform a parallel computation phase followed
by a synchronization phase where the gradients (e.g., g11 and
g12) are aggregated at a barrier. The model parameters are
then updated according to this aggregated set of gradients.
This method ensures that all workers work on the same
model parameters and prevents any workers from proceeding
to the next mini-batch. This synchronous update guarantees
the method to be equivalent to a true mini-batch stochastic
gradient descent algorithm, which can ensure the correctness
of the parallel computation [15]. Since BSP workers need to
wait for all updates to the model parameters at the barrier,
the faster workers all remain idle while waiting for the
stragglers. This drastically limits the training performance of
the whole training cluster. Generally speaking, BSP offers high
converged accuracy but suffers from computation inefficiency,
especially in unfavorable environments.

ASP, as shown in Figure 3(b), allows computations to
execute in parallel as fast as possible by running workers
completely asynchronously. Each worker individually pulls pa-
rameters and pushes new gradients for updates at the parameter
server. For example, once Worker1 pushes the computed gradi-
ent g11 to the PSs, w0 is updated as w1 = w0−ηt(g11+f(w0))

1 2 3
Exp. Setup

0

2000

4000

6000

Th
ro

ug
hp

ut
 (I

m
ag

es
/s

)

Fail

BSP
ASP

(a) Without straggler.

0 + 
 0ms

1 + 
 10ms

2 + 
 10ms

1 + 
 30ms

2 + 
 30ms

Number of strugglers and latency

0

2000

4000

Th
ro

ug
hp

ut
 (I

m
ag

es
/s

)

BSP
ASP

(b) Exp. Setup 1: with straggler.

Fig. 4: Training throughput comparison between BSP and ASP.
We observe that training with ASP has higher throughput than
with BSP, even without stragglers. See Section VI-A for a detailed
methodology.

and used by the subsequent task in Worker1. Similarly, the PSs
will update w1 as w′1 = w1−ηt(g12+f(w1)) when receiving
g12 from Worker2. Consequently, ASP can often achieve better
speedups than BSP. However, ASP can be impacted by the
stale gradients: the tasks may use old model parameters (e.g.,
the second tasks of Worker1 and Worker2 use different model
parameters w1 and w′1) for training, which introduces noise
and error into the computation. As such, the model trained
with ASP often converges to lower training and test accuracy
when compared to BSP [11], [15].

III. PROBLEM STATEMENT AND SOLUTION OVERVIEW

In this paper, we investigate how to improve the training
throughput while simultaneously maintaining the converged
accuracy for distributed deep learning. Our study is motivated
by the inherent limitations of existing synchronization proto-
cols, as previously discussed in Section II. Our key insight
is that by adaptively switching between the synchronization
protocols based on both internal training status and runtime
factors, we can avoid their respective drawbacks such as low
speedup and low converged accuracy as much as possible.

System model. We consider the scenario of training a deep
learning model in a dedicated cloud-based GPU cluster. We fo-
cus on the popular parameter-server-based distributed training
architecture adopted by TensorFlow and prior work [5], [12],
and collocate the PS and worker on the same physical server.
Further, we target the training of deep convolutional neural
networks on widely used image datasets with data parallelism,
a commonly used approach for models that can fit into the
memory of a discrete GPU. We assume deep learning practi-
tioners will provide a training script that specifies the initial
training configuration, describing the training cluster and the
deep learning workload, as well as the hyper-parameters. This

3



assumption is reasonable as distributed training is often an
iterative and recurring process, making such training scripts
readily accessible.

Challenges. There are three key challenges in designing poli-
cies for hybrid synchronization. First, given that the training
itself is a stochastic process, it is challenging to leverage
internal training metrics such as training loss and anytime
accuracy to extrapolate and generalize observed performance
benefits. Second, we have observed high accuracy variations,
even using the same training workload and cluster setup (e.g.,
Figure 5(a)). As such, it necessitates the consideration of this
inherent performance fluctuation when designing any policies.
Additionally, it also makes designing empirical-based policies
costly at the very least because each configuration needs to
be evaluated multiple times. Third, distributed training can
be prone to runtime performance variations such as network
bandwidth fluctuations, and if left undealt with, the stragglers
can lead to degraded training performance (e.g., Figure 4).

Sync-Switch Overview. We address the above-mentioned chal-
lenges of hybrid synchronization with an guided empirical
exploration and introduce a new prototype system called Sync-
Switch. Specifically, we devise a set of policies that regulate
the protocol, the timing, and the configuration to use for dis-
tributed training. Our policies include the offline ones that are
generated by a binary search-based algorithm and the online
ones for handling transient stragglers with temporary slow-
down2. These policies can be used in tandem to improve the
training throughput while simultaneously maintaining high-
quality converged accuracy for distributed training jobs, as we
will demonstrate empirically in Section VI. To support adap-
tive synchronization, Sync-Switch is built upon the existing
framework functionalities such as saving the training progress
and restarting from the checkpoint as well as mechanisms to
monitor and collect internal training metrics. More details on
implementation will be described in Section V.

IV. Sync-Switch POLICY DESIGN

In this section, we introduce a set of policies that determine
how and when to switch to a different synchronization. This in-
cludes offline policies that target recurring jobs (Sections IV-A
and IV-B1), online policies that react to training status (Sec-
tion IV-B2), and policies for adjusting hyper-parameters.

A. Protocol Policy: Which to Use and in What Order?

In this work, we focus on selecting between two synchro-
nization protocols, i.e., fully synchronous (BSP) and fully
asynchronous (ASP). As described previously in Section I,
there are a plethora of other protocols that provide different
trade-offs between training throughput and converged accu-
racy. Mixing in these in-between training protocols might pro-
duce a slightly better outcome due to larger decision spaces;
however, these in-between protocols can be complicated to

2This differs from a longer-term slowdown, which can be most effectively
handled by replacing the slow worker [14].

BSP BSP->
ASP

ASP->
BSP

ASP
0.850

0.875

0.900

0.925

0.950

A
cc

ur
ac

y

(a) Order of synchronicity.

0 20 40 60 80 100
BSP proportion %

0.89

0.90

0.91

0.92

A
cc

ur
ac

y

(b) Percentage of synchronicity.

Fig. 5: Impact of synchronicity. We observe that (i) switching from
BSP to ASP can maintain the same level of converged accuracy
and (ii) training longer with BSP does not further improve accuracy
beyond the knee point.

use due to lack of framework support and the use of extra
hyper-parameters [9]–[11].

Our first policy states that we should start the training with
BSP and then switch to ASP when the following conditions are
satisfied: (i) When switching to ASP yields a similar converged
test accuracy (but perhaps a lower training accuracy) as
continuing with BSP; (ii) when transient stragglers arise in the
training cluster. We will describe the policies that verify both
conditions to determine the switching timing in Section IV-B.

1) Empirical Analysis: To evaluate our hypothesis that
running BSP at earlier epochs and switching to ASP at later
epochs allows one to obtain a test error which is as low
as using BSP during the entire training, we conducted two
experiments. The experiments train the ResNet32 model on
the CIFAR-10 dataset with an 8-worker cluster, with each
configuration repeated five times (additional experiment details
can be found in Section VI-A). First, we evaluate the con-
verged accuracy when training with different combinations of
BSP and ASP protocols, as shown in Figure 5(a). We observe
that training with BSP for 50% of the workload and then
switching to ASP outperformed its counterpart, i.e., ASP →
BSP. Second, we examine the relationship between converged
accuracy and the percentage of BSP training and find that
training more with BSP does not necessarily lead to higher
converged accuracy. As shown in Figure 5(b), the converged
accuracy first increases with the percentage of BSP training
and then stays on par with training entirely with BSP (i.e.,
100%). This observation also provides the basis for deriving
the timing policy as described in Section IV-B.

2) Theoretical Explanations: Next we explain why using
BSP in the earlier epochs and then switching to ASP can
allow us to simultaneously accomplish both our goals of
minimizing the population loss (that is, the expected value
of the testing loss) as effectively as when using static BSP,
and improving the per-epoch computation time. Here, by static
BSP (respectively, ASP), we mean the protocol where one uses
only BSP (respectively, ASP) from start to finish.

First, we note that the steps taken by SGD earlier in the
training are much larger than those taken later in the training.
This is because, (i) at earlier epochs the gradient tends to have
a much larger magnitude, and (ii) we use a decaying learning
rate schedule, where the learning rate is much larger at earlier
epochs than at later epochs, a common practice when training

4



deep learning models [16], [17].
Second, we note that at coarser scales corresponding to the

large steps taken by the algorithm earlier in the training, the
landscape of the population loss resembles that of the training
loss (see Remark A.1 in the appendix). On the other hand,
past empirical work [18]–[20] suggests that at finer scales
corresponding to the smaller steps taken later in the training,
the landscape of the population loss is much smoother than
that of the training loss.

These two facts imply that while stale gradients may be
ineffective very early in the training when larger steps are
taken by the algorithm, stale gradients can be used to ef-
fectively minimize the population loss later in the training,
since the landscape of the population loss is much smoother
on a finer scale corresponding to the smaller steps taken by
the algorithm later in the training (Figure 6). This is because,
at later epochs, the gradient of the population loss does not
change as quickly each time the algorithm takes a step, which
means that stale gradients may still be able to provide useful
information about the gradient of the population loss at the
current point even though the stale gradients were computed
at previous (but nearby) points. This suggests that using ASP
at later epochs (Figure 6(b)) can allow one to minimize the
population loss (and hence the testing loss) as effectively as
static BSP (Figure 6(a)), despite the fact that static BSP can
achieve a lower training loss value (see Remark A.2 in the
appendix).

On the other hand, at very early epochs, when the algorithm
is very far from a minimum point, the gradient of the loss
function may have a very large magnitude and may change
very quickly at each step 3 Thus, in protocol policies where
ASP is used early in the training, its stale gradients may not
provide much information about the value of the gradient at the
current point, and may cause ASP to exhibit unstable behavior
early in the training (Figures 7(b) and 7(c)), preventing ASP
from effectively decreasing the loss value. To avoid this
unstable behavior, one should use BSP in the very early stages
of the training, and only switch to ASP at a later epoch once
the learning rate is lower and the gradients are changing more
slowly (Figure 7(d)) (See Remark A.3 in the appendix.)

B. Timing Policy: When to Switch?

Next, we introduce Sync-Switch’s timing policy which de-
termines when to switch between BSP and ASP. Deciding
the proper timing to switch is an important problem as it
not only impacts the converged accuracy but also the training
time. Furthermore, it is a challenging problem as both model-
specific factors such as training progress and runtime factors
such as slow nodes can impact the timing. Specifically, we
develop both offline and online policies that are suitable to
use under different training conditions.

3For instance, consider the simple 4’th-order polynomial f(x) = x4. For
this function, the gradient f ′(x) = x3 changes more quickly when x is
further from the minimum point x = 0. Roughly speaking, for loss functions
defined by deep neural networks there can be many (multivariate) high-order
terms, with the order of the terms growing with the depth of the network.

(a) Static BSP. (b) Switching, BSP to ASP.

Fig. 6: The training loss (green solid curve) is not as smooth as the
population loss (blue dashed curve). Thus, the steps taken by Sync-
Switch (b) with stale gradients (red lines) prevent it from finding
the minimum of the training loss as effectively as static BSP (a).
However, it is still able to find a point which minimizes the population
loss (and hence the test loss) as effectively as static BSP.

BSP

(a) Static BSP.

ASP

(b) Static ASP.ASP→BSP

(c) ASP to BSP.

BSP→ASP

(d) BSP to ASP.

Fig. 7: Illustrations of various combinations of BSP and ASP on
a simple smooth loss function (blue level sets). In earlier epochs,
the gradient changes quickly at each step and stale gradients (red) are
much less reliable than non-stale gradients (black). Thus algorithms
which use ASP earlier in the training may have a difficult time settling
into a local minimum region where the gradient is small (b, c). This
is true even if one switches from ASP to BSP (c) as the algorithm
may get stuck in a saddle point once the learning rate has decayed,
causing it to take a long time to escape the saddle point. In contrast,
if one only uses stale gradients at later epochs once the algorithm
is closer to a minimum point, the stale gradients will be low-bias
estimates for the true gradient and will still allow the algorithm to
reach the minimum point (d).

1) Offline Policy via Binary Search: Based on our empirical
observation that BSP is strictly slower than ASP, with or
without stragglers, and that the converge accuracy increases
monotonically with the amount of BSP training, we formulate
the searching process as a binary search problem. Specifically,
for a given training workload, our goal is to find a switching
point s that yields a converged accuracy α(s) that satisfies
α(smin) ≤ α(s) ± αthreshold ≤ α(smax), where smin and
smax represents training with ASP and BSP, respectively.
Further, the corresponding training time T (s) should be as
close to T (smin) as possible, i.e., switching as early from BSP
to ASP as possible. Lastly, we want to find s in as fewer trial
training sessions as possible to reduce search overhead. The
pseudo-code for our binary search algorithm B can be found
in the appendix. In summary, for each distributed training
workload, we can use a binary search algorithm to find the
best switching point s at which point Sync-Switch will switch
from training with BSP to ASP. We analyze the cost and
performance tradeoff in Section VI-C1.

5



2) Online Policies for Handling Stragglers: The offline pol-
icy described above provides us a good basis for speeding up
distributed training while achieving high-quality test accuracy.
However, it does not account for runtime factors including
stragglers and also requires upfront search cost. In this section,
we introduce two types of policies that are designed to react
to the training status.

We target transient stragglers, e.g., nodes that exhibit tem-
porary slowdown due to datacenter network or server re-
source contention, a non-rare occurrence when using public
cloud [21], [22]. Note that permanent stragglers are best dealt
with by requesting replacement [12], [14]—simply switching
to a more straggler-tolerant protocol like ASP might mitigate
but not eradicate the performance impact. More explicitly, we
consider the policies that deal with permanent stragglers as
complementary work and therefore skip the discussion and
evaluation of such policies. For ease of exposition, we assume
that each occurrence of the slowness lasts at most the time to
provision a new cloud server—we use 100 seconds based on
empirical measurement reported by prior work [5]. We further
assume that (i) each node can become a straggler at any time
during the training; (ii) the number of unique straggler nodes
is less than the cluster size. Our goal is to design policies
that adequately deal with the potential impact on the training
time which also work in tandem with the other policies of
Sync-Switch described above.

We introduce two policies, both centering on the key insight
that any transient straggler-oriented policies only need to react
before the switch timing for a given workload. This is because
once a training session is switched to ASP, we consider it
immune from the impact of transient stragglers. The first
greedy policy simply switches to ASP (if it is not already
using ASP, which can happen if two stragglers overlap) when
a straggler is detected; once the cluster is free of any stragglers
and the aggregate BSP training has not been satisfied, it will
switch back to training with BSP. This policy therefore might
result in multiple synchronization switches, which overhead
as we will show in Section VI-C2 can be in the order of tens
seconds.

To circumvent the switching overhead, we design an elastic-
based policy that removes any detected stragglers from the
current cluster so as to complete the specified amount of BSP
training free of stragglers. Once the designated BSP workload
is fulfilled, it will then restore the cluster size and train the
remaining workload with ASP. As such, this elastic-based pol-
icy is more resistant to the frequency of straggler occurrences.
For both policies, we leverage the historical average training
throughput to detect the stragglers, a common technique used
in various application domains [5], [23]. Specifically, a worker
k is identified as a straggler if its training throughput over a
sliding window Sk is lower than the difference between the
cluster average and standard deviation S−σ, for a number of
consecutive detection windows.

1024 128
BSP Batch Size

0

250

500

750

Th
ro

ug
hp

ut
 (I

m
ag

es
/s

)

(a) Batch size scaling.

Baseline Zero Fixed
Scaled

Nonlinear
Ramp

Linear
Ramp

0.80

0.85

0.90

0.95

C
on

ve
rg

ed
 A

cc
ur

ac
y

(b) Momentum Scaling.

Fig. 8: Comparison of different hyper-parameter configurations:
Exp. Setup 1. The four methods we explored for setting momentum
after switching to ASP are: (i) setting the momentum to 0, (ii) setting
the momentum to 1

n
, (iii) ramping up the momentum based on 2i

n
,

(iv) ramping up the momentum based on i
n

where i is the number
of epochs after switching. Both (iii) and (iv) will stop the ramp up
once the momentum reaches the original value used by BSP.

C. Configuration Policy: How to Adjust Hyper-parameters?

Hyper-parameters are commonly considered important for
training performance [24], [25]. In our work, we also observe
non-negligible differences with different hyper-parameters af-
ter switching from BSP to ASP. For example, in Figure 8(a),
we show that the difference in training throughput can be up to
2X with different batch sizes; in Figure 8(b), we observe up to
5% converged accuracy differences using different momentum
scaling techniques. As such, it is important to choose suitable
hyper-parameters after synchronization switching so as to
retain the training benefits.

Through empirical investigations, we find that adjusting the
following three hyper-parameters: mini-batch size, learning
rate, and momentum sufficient. Note, since our work is not
about hyper-parameter tuning, we do not focus on finding the
optimal hyper-parameters set for a specific training setting;
rather, we are aiming to automatically change the value of
these hyper-parameters based on the synchronization protocol
in use. We assume the deep learning practitioners will provide
an initial set of hyper-parameters, e.g., a mini-batch size of B
and a learning rate of η, given the training workload and a
GPU cluster of n nodes.

To start the training with BSP, we will configure the mini-
batch to be nB. This configuration is based on both the im-
plementation of BSP batch size in the TensorFlow framework
(i.e., as a global value distributed to each worker) and prior
work’s suggestion of setting BSP batch size proportionally to
the cluster size [26]. Once switching from BSP to ASP, we
will reduce the mini-batch to be B as in ASP training the
batch size is treated as a local value specific to each worker.
We use the linear scaling rule for setting the learning rate
for training with BSP as ηBSP = nη. This is based on prior
work that demonstrated the effectiveness of scaling learning
rate based on mini-batch size [26]. In contrast to prior work
that adjusts momentum based on mini-batch size [27], we find
that using the same momentum value for both BSP and ASP
allows Sync-Switch achieve comparable accuracy to training
with BSP (i.e., leftmost bar in Figure 8(b)).

6



TensorFlow

Sync-Switch

Job/Task/Worker Profiler
Continuously collect runtime metrics

Policy Manager

Protocol
policy

Timing
policy

Config.
policy

Configuration Actuator

Worker 1

Worker 2
1. Checkpoint current states 

2. Switch sync protocol 
3. Restart tasks from checkpointed states

DL models

Runtime

2. Switch
synchronization
protocol

1. Checkpoint
current states

Parameter 
servers

Custom hook manager
Configs. (e.g.,
sync protocols)

Perf.
metrics

BSP-based
SGD

ASP-based
SGD

Fig. 9: Sync-Switch architecture and implementation. We imple-
ment Sync-Switch on top of the popular TensorFlow framework as two
logical parts: a standalone entity and a per-node part. Grey-shaded
components are our modifications. Hollow and solid arrows represent
the profiling and actuation workflow, respectively.

V. Sync-Switch IMPLEMENTATION

We implemented a Sync-Switch prototype, as shown in
Figure 9, based on TensorFlow v1.10 and Tensor2Tensor
v1.9 [28]. The prototype includes the parameter synchroniza-
tion policies described in Section IV for distributed training
jobs. Sync-Switch users can manage their distributed training
jobs via the command line. Sync-Switch’s implementation con-
sists of two logical components: a standalone cluster manager
that interfaces with Google Cloud Platform and a custom hook
manager embedded in TensorFlow that collects training status
and adjusts per-node configurations.

The cluster manager first takes the user input, including
the training job script and cluster size, to initialize protocol
and configuration policies. If the job is a recurring one, the
cluster manager initializes the timing policy based on the prior
binary search-based result. Otherwise, the cluster manager
launches a pre-specified number of pilot jobs per the search
algorithm described in Section IV-B1 to obtain the timing
policy. Afterward, Sync-Switch creates the training cluster
consisting of nodes running with TensorFlow and sets up the
profiler for continuously collecting runtime metrics.

Sync-Switch’s custom hook manager is written as a core
Python component to interact with TensorFlow runtime to col-
lect internal metrics such as training throughput and training
loss and to change hyper-parameters like learning rates. The
collected metrics are sent back to the profiler, which, in con-
junction with the policy manager, decides whether to trigger
a synchronization protocol switch. The switch mechanism is
implemented by having each custom hook manager listen at a
pre-specified port for incoming commands and by leveraging
TensorFlow’s built-in model checkpoint/restore functions for
persisting the training progress. In Sync-Switch, once all cus-
tom hook managers finish checkpointing, the cluster manager
propagates the updated training job and configurations to all
nodes. Once notified, custom hook managers relaunch the
training tasks to resume the training from the last model
checkpoint but with a different synchronization protocol.

VI. EVALUATION

We conducted our experiments by training popular deep
learning models on Google Cloud Platform (GCP) to quantify

Sync-Switch’s performance over training exclusively with BSP
and with ASP, two commonly chosen baselines [9], [11]. Note,
since the performance of existing synchronization protocols
all fall in between that of BSP and ASP, we believe eval-
uating using BSP and ASP provide us a good foundation
for understanding Sync-Switch’s performance. Furthermore,
semi-synchronous protocols, such as SSP and DSSP, can
also be utilized in Sync-Switch (for example switching from
SSP to ASP)—Sync-Switch is agnostic to the underlying
synchronization protocols. Our evaluation includes systems
experiments using our Sync-Switch prototype to evaluate the
efficacy of timing policies and framework overhead with real
TensorFlow jobs, as well as simulation experiments to analyze
the performance and cost of our binary search-based algorithm
under realistic workload conditions. Table I summarizes our
experiment setups and result highlights.

A. Evaluation Setup and Methodology

Distributed Training Workloads. We choose two different
workloads, (i) ResNet50 on the CIFAR-100 dataset and (ii)
ResNet32 on the CIFAR-10 dataset. Both models are part
of the ResNet model family, one of the widely used CNNs
for image recognition tasks. We use the ResNet implemen-
tations from Tensor2Tensor [28]. ResNet50 has more layers
than ResNet32, leading to different model parameter size
and floating-point operations, and therefore has longer per-
batch training time with the same cluster. The datasets, each
containing 60K images of size 32X32 pixels, are widely used
in deep learning research [29]. The key difference between the
two datasets is the number of the classification classes (i.e.,
CIFAR-100 contains 100 classes vs. CIFAR-10 contains 10
classes); therefore, it often takes more epochs to train on the
CIFAR-100. As such, these two workloads allow us to evaluate
Sync-Switch’s performance under different computation and
learning requirements.
Cluster Setup and Configuration. We run all experiments
on cloud-based GPU clusters in GCP’s us-west1 region; we
choose two commonly used cluster sizes of eight and sixteen4

to evaluate Sync-Switch’s performance [11], [14]. Each server,
running Ubuntu 18.04 LTS, has 8 vCPUs, 30 GB of main
memory, 100GB local HDD storage, and is equipped with
one Nvidia K80 GPU card. To account for the inherent
accuracy variations in SGD-based deep learning training, we
repeat each experiment setup five time using the same model
parameter initialization algorithm. We report both the average
performance with standard deviation and the runs with the best
performance, measured by the highest achieved test accuracy.
Evaluation Metrics. We use two groups of metrics for eval-
uating Sync-Switch’s efficiency in parameter synchronization
(first group) and its associated overhead (second group). The
first group includes training loss, test accuracy, total training
time, and time-to-accuracy. Training loss is calculated based
on the cross-entropy loss function per mini-batch. We report
the average training loss collected every 100 ASP steps to

4Smaller cluster size has less impact on ASP’s converged accuracy [5].

7



Experiment Workload Cluster Sync-Switch policy Throughput Speedup TTA Speedup
Setup (model, dataset) (size, GPU) (protocol, timing) vs. ASP vs. BSP vs. ASP vs. BSP

1 ResNet32, CIFAR-10 8, K80 P1: ([BSP, ASP], 6.25%) 0.78X 5.13X N/A 3.99X
2 ResNet50, CIFAR-100 8, K80 P2: ([BSP, ASP], 12.5%) 0.89X 1.66X N/A 1.60X
3 ResNet32, CIFAR-10 16, K80 P3: ([BSP, ASP], 50%) failed 1.87X N/A 1.08X

TABLE I: Summary of our experiment setups, timing policies, and performance. We observe that Sync-Switch achieves up to 5X (4X)
speedup in training throughput (TTA). Pi represents the set of policies for setup i. Note ASP-based training failed in exp. setup 3.

1 2 3
Exp. Setup

0.0

0.5

1.0

N
or

m
al

iz
ed

 T
ra

in
in

g 
Ti

m
e

15.2%

53.8%

19.5%

60.1%

Fail

53.6%

BSP ASP Sync-Switch

(a) Total training time.

1 2 3
Exp. Setup

0.6

0.7

0.8

0.9

1.0

C
on

ve
rg

ed
 A

cc
ur

ac
y 0.919

0.892
0.917

0.746
0.708

0.746

0.923

Fail

0.922

BSP ASP Sync-Switch

(b) Converged accuracy.

Fig. 10: End-to-end performance comparison. Using Sync-Switch,
we observe on average 1.66X-5.13X speedup and similar converged
accuracy compared to training with BSP. Sync-Switch achieved up to
3.8% higher converged accuracy compared to training with ASP.

avoid incurring excessive measurement overhead [5]. Test ac-
curacy refers to the top-1 accuracy of the trained model when
evaluating on the test dataset. We measure the test accuracy
every 2000 ASP steps on the standalone cluster manager to
avoid impacting the training performance. A model is said
to be converged if its test accuracy has not changed for more
than 0.1% for five evaluations and we report the corresponding
value as the converged accuracy. Total training time is the
time, including computation and networking time, taken for
a training cluster to complete a user-specified workload. We
measure this time at the end of each training using the
TensorFlow built-in logs. Time-to-accuracy (TTA) denotes the
time to reach a specified test accuracy threshold and provides
valuable insights into both the training throughput and model
accuracy [30]. We use the average converged accuracy of
models trained with BSP in the same setup as the threshold.
For the second group, search time quantifies the time for Sync-
Switch to find the near-optimal switch timing using the binary
search. We calculate search time as the sum of the total training
time of all sessions trained during the search. Switch overhead
describes the total time to switch between synchronization
protocols with TensorFlow.
Hyper-parameter Setting. We set the initial hyper-parameters
based on the original ResNet paper [16] and use the SGD with
momentum of 0.9 as the optimizer. Specifically, we configure
the training workload to be 64K steps, batch size to be 128,
and learning rate to be 0.1. We use a piece-wise function that
decays learning rate at 32K and 48K steps, with scaling factors
of 0.1 and 0.01, respectively. Further, we use the configuration
policies described in Section IV-C to adjust relevant hyper-
parameters based on the specific experiment setup.

B. Performance of Sync-Switch

1) End-to-end Comparison: Table I and Figure 10 summa-
rize the end-to-end training performance achieved by Sync-

Switch. In all setups evaluated, Sync-Switch outperforms train-
ing exclusively with BSP and with ASP in total training
time, TTA, and converged accuracy, respectively. For exam-
ple, we observe that Sync-Switch uses only 19.5% of the
training time while reaching similar converged test accuracy
when compared to BSP; additionally, Sync-Switch improves
converged accuracy by 2.5% with only 1.28X the training
time when compared to ASP (exp. setup 1). The speedups
achieved by Sync-Switch are more prominent compared to 1.2-
3.7X reported in prior work [9]; the high-quality converged
accuracy is significant as recent innovations on models have
similar levels of improvement, e.g., less than 2% [31], [32].
The training speedup comes from Sync-Switch only needs
to train a small portion of workload using BSP and the
competitive converged accuracy comes from identifying the
most appropriate switch timing.

Furthermore, Figure 11 details the performance of training
a ResNet32 on the CIFAR-10 dataset using an 8-GPU cluster.
We plot training loss and test accuracy of the best runs for ASP,
BSP, and Sync-Switch in Figures 11(a) and 11(b). Interestingly,
training with BSP at the first 6.25% steps allows Sync-
Switch to decrease the training loss faster and to lower values
(the lower the better), compared to training exclusively with
ASP. Additionally, even though Sync-Switch does not decrease
training loss to the same level as BSP, it still reaches the same
converged accuracy. More importantly, Sync-Switch only needs
25% training time used by BSP to reach the same converged
accuracy (i.e., a 4X TTA speedup). Further, Figures 11(c) and
11(d) draw the comparison to manual switching, i.e., switching
at a static time point, and demonstrate Sync-Switch’s utility.

Results of similar magnitude are also observed for the other
two setups as shown in Figure 12 and Figure 13. Note that
training ResNet32 with ASP (and training with BSP for less
than 50% steps) in a cluster of 16 GPU servers resulted in
failed training due to the training loss divergence. The failed
training sessions are likely caused by noisy gradients that are
exacerbated with larger cluster sizes. This observation attests
to an additional benefit provided by Sync-Switch—being able
to complete training in scenarios where ASP cannot.

2) Generality Analysis of Our Observations: Figure 14
compares the performance of directly using policies found
for the other two setups to the third setup. We make the
following key observations. First, for similar workloads (i.e.,
training ResNet32 on Cifar-10 vs. ResNet50 on Cifar-100), the
cluster size seems to play an important role in determining the
efficiency of the policies. Concretely, training with policy 2 in
the experiment setup 1 achieves almost the same converge
accuracy (91.7% vs. 91.4%) and uses about 33.0% longer

8



0 20 40 60
Steps (k)

10
3

10
2

10
1

10
0

Lo
ss

 (l
og

 s
ca

le
) BSP

ASP
Sync-Switch: P1

(a) Training loss.

0 20 40 60
Steps (k)

0.6

0.7

0.8

0.9

1.0

A
cc

ur
ac

y

BSP
ASP
Sync-Switch: P1

(b) Test accuracy.

0%
ASP

3.125%6.25% 12.5% 25% 50% 100%
BSP

Switch timing

0.850

0.875

0.900

0.925

C
on

ve
rg

ed
 A

cc
ur

ac
y

(c) Converged accuracy.

0%
ASP

3.125%6.25% 12.5% 25% 50% 100%
BSP

Switch Timing

0

50

100

150

200

Tr
ai

ni
ng

 T
im

e 
(m

in
)

(d) Total training time.

Fig. 11: Performance of exp. setup 1. Using the policy of switching to ASP after completing 6.25% workload with BSP, Sync-Switch
achieves similar converged accuracy and 80.5% training time saving compared to training with BSP. Between the range of 6.25% to 50%,
switch timing has minimal impact on the converged accuracy but noticeable impact on training time. Dashed line marks the switch timing.

0 25 50 75 100 125
Steps (k)

10
2

10
1

10
0

Lo
ss

 (l
og

 s
ca

le
) BSP

ASP
Sync-Switch: P2

(a) Training loss.

0 25 50 75 100 125
Steps (k)

0.2

0.4

0.6

0.8

A
cc

ur
ac

y

BSP
ASP
Sync-Switch: P2

(b) Test accuracy.

0%
(ASP)

6.25%12.5% 25% 50% 100%
(BSP)

Switching Point

0.65

0.70

0.75

C
on

ve
rg

ed
 A

cc
ur

ac
y

(c) Converged accuracy.

0%
(ASP)

6.25%12.5% 25% 50% 100%
(BSP)

Switching Point

0

50

100

150

200

Tr
ai

ni
ng

 ti
m

e 
(m

in
)

(d) Total training time.

Fig. 12: Performance of exp. setup 2. With the policy of switching to ASP after completing 12.5% steps using BSP, Sync-Switch achieves
similar converged accuracy with 39.9% training time saving, compared to training with BSP.

0 20 40 60
Steps (k)

10
3

10
2

10
1

10
0

Lo
ss

 (l
og

 s
ca

le
) BSP

Sync-Switch: P3

(a) Training loss.

0 20 40 60
Steps (k)

0.6

0.7

0.8

0.9

1.0

A
cc

ur
ac

y

BSP
Sync-Switch: P3

(b) Test accuracy.

0%
ASP

50% 100%
BSP

Switch timing

0.850

0.875

0.900

0.925

A
cc

ur
ac

y

Fail

(c) Converged accuracy.

0%
ASP

50% 100%
BSP

Switch timing

0

50

100

150

Tr
ai

ni
ng

 T
im

e 
(m

in
)

Fail

(d) Total training time.

Fig. 13: Performance of exp. setup 3. Due to the highly unstable convergence of stale gradients, ASP and switching before 50% (first
learning rate decay) diverged, leading to failed training.

1 2 3
Exp. Setup

0

50

100

150

Tr
ai

ni
ng

 T
im

e 
(m

in
)

Fail Fail

Policy 1 Policy 2 Policy 3

(a) Total training time.

1 2 3
Exp. Setup

0.6

0.8

1.0

C
on

ve
rg

ed
 A

cc
ur

ac
y

0.9170.915
0.920

0.732
0.746

0.743

Fail Fail

0.921

Policy 1 Policy 2 Policy 3

(b) Converged test accuracy.

Fig. 14: Cross examination of Sync-Switch policies in different
experiment setups. Policy i represents the set of policies found by
Sync-Switch for experiment setup i (as summarized in Table I).

training time. The prolonged training time is expected as
policy 2 requires more training to be done with BSP. In
comparison, training with policy 3 under the same setup
uses 3X of the training time with policy 1. Furthermore,
by using the correct policy under experiment setup 3, the
training successfully finished (without diverging) and achieved
comparable test accuracy to using BSP while saving almost
46.4% training time. As shown in Figure 13, training with
ASP failed without producing usable models. This observation
further suggests the practical utility of Sync-Switch.

1 2
Straggler Scenario

0.6

0.7

0.8

0.9

1.0

C
on

ve
rg

ed
 A

cc
ur

ac
y

Omitted

Baseline Greedy Elastic

(a) Converged accuracy.

1 2
Straggler Scenario

0.7

0.8

0.9

1.0

N
or

m
al

iz
ed

 T
ra

in
in

g 
Ti

m
e

Omitted

Baseline Greedy Elastic

(b) Normalized training time.

Fig. 15: Comparison of Sync-Switch’s straggler-aware policies.
We observe that the elastic-based policy preserves the converged test
accuracy and has a 1.1X speedup compared to the baseline policy.

3) With Transient Stragglers: We construct two transient
straggler scenarios, mild and moderate, for experiment setup
1 to evaluate the effectiveness of the straggler-aware policies
introduced in Section IV-B2. In the first scenario, we set
the number of stragglers to be 1, the frequency of straggler
occurrences to be 1, and inject the slowness by emulating
the network latency to be 10ms. In the second scenario, we
increase the number of stragglers, the frequency of straggler
occurrences, and the degree of slowness to be 2, 4, and
emulated with 30ms network latency.

9



Search Setting Cost Amortization Effective
(vs. BSP)

Success
Probability

(Exp.1, No, 5, 5) 12.71X 15.79 1.97X 100%
(Exp.1, No, 3, 3) 7.62X 9.47 1.97X 99.2%
(Exp.1, Yes, 0, 3) 4.63X 5.75 2.59X 100%

(Exp.2, No, 5, 5) 17.86X 44.81 1.12X 100%
(Exp.2, No, 4, 4) 14.28X 35.83 1.12X 93.4%
(Exp.2, Yes, 0, 4) 9.05X 22.71 1.17X 100%

(Exp.3, No, 5, 5) 7.68X 16.54 1.30X 100%
(Exp.3, No, 3, 3) 4.61X 9.93 1.30X 100%
(Exp.3, Yes, 0, 1) 0.54X 1.16 1.87X 100%

TABLE II: Binary search cost analysis. We define a search setting
as job recurrence, number of BSP trainings, and number of candidate
policy trainings.

Figure 15 compares the training performance with and
without (baseline) applying our straggler-aware policies. We
observe that when the straggler scenario is mild (scenario one),
both straggler-aware policies adequately handle the potential
performance degradation and even shorten the total training
time by 2%, compared to the straggler-agnostic baseline pol-
icy. Furthermore, we find that the greedy policy leads to a 2%
lower converge accuracy while policy two is able to maintain
the high-quality converge accuracy. The accuracy degradation
is most likely due to having to perform two extra switches,
one to ASP and the other back to BSP, before the optimal
timing. Based on our empirical observation, we conclude that
the greedy policy does not work in conjunction with Sync-
Switch’s existing baseline policies.

In contrast, the elastic-based policy is proven to be effective
even under moderate levels of slowness. In particular, we
observe that this policy not only achieves a similar level of
converged accuracy but also leads to a 1.11X speedup. This
further suggests that the better course of action is to train
without the transient stragglers than to block the remaining
cluster nodes from making progress when training BSP.

C. Overhead of Sync-Switch

1) Binary Search Cost: To quantify the overhead of our
binary search-based algorithm (in search time) in different
training scenarios, i.e., with recurring jobs and fewer mea-
surement runs, we use all our training logs and simulate each
search setting 1000 times with the accuracy threshold of 0.01.
Table II details the cost-performance trade-off (more results
are available in the appendix). If the job is recurring, the search
cost can be reduced by up to 5X the BSP training. However,
when facing a new training job, it is best to at least repeat the
BSP runs 3 times. We further observe that with too few BSP
training, the search setting often ends up with significantly
lower success probability (e.g., 56.8% to 82.3%) in finding
the same switching timing as the baseline setting.

Additionally, we analyze the amortized cost, measured by
the number of job recurrences, and the effective training ratio,
measured by the multiples of BSP training sessions. The
former provides further justification of the cost-effectiveness of
our binary search algorithm and the latter signifies the potential
information gains. As an example of the search setting (No,

Cluster Actuator Exec. Init. (s) Switching (s) Total (s)

8 K80 Sequential 157 90 247
Parallel (Ours) 90 36 126

16 K80 Sequential 268 165 433
Parallel (Ours) 128 53 181

TABLE III: Sync-Switch Overhead. We measure both the initializa-
tion time, i.e., the time taken to setup the training cluster, and the
switching overhead, when training ResNet32 using Sync-Switch.

3, 3) in Table II, if a job needs to be trained for more than
9 times, a very likely event given the trial-and-error nature of
deep learning training, the corresponding search cost is then
amortized. Moreover, the search process itself also produces
almost 2X valid training sessions compared to training with
BSP. In summary, our analysis shows that the search cost is
reasonably low and can be further reduced by continuously
using Sync-Switch.

2) Runtime Overhead: We quantify the overhead of using
Sync-Switch to perform distributed training. Our measurements
are based on training ResNet32 on the CIFAR-10 dataset,
as the training framework overhead is largely workload-
independent [5]. Table III shows the total time spent by
Sync-Switch for initializing the cluster and switching to a
different synchronization protocol. First, initializing a cluster
of twice the workers takes 1.42X the time of initializing a
cluster of 8 workers. Note that one can expect to have similar
initialization time even with just the vanilla TensorFlow [5].
Second, by having a configuration actuator that propagates
distributed training tasks in parallel, Sync-Switch reduces both
the initialization time and switching overhead by 2X and 3.1X,
respectively. Third, the switching overhead can be as low as 36
seconds, about 1.7% of the time taken to train the model with
Sync-Switch. In summary, Sync-Switch incurs low switching
overhead that increases sub-linearly with the cluster size.

VII. RELATED WORK

Distributed Synchronization Protocols. Researchers have
designed many synchronization protocols that can be roughly
categorized as BSP [6], ASP [7], and semi-synchronous pro-
tocols [8], [33], that trade-off the training throughput and
accuracy of distributed DL training. These studies all focus on
improving the synchronization protocols for distributed SGD,
by exposing mechanisms and policies to control the model
staleness. In contrast, our work focuses on determining the
best way to utilize existing protocols and can be used in
conjunction with new synchronization protocols. Compared
to semi-synchronous protocols such as SSP and DSSP, our
work leads to good converged accuracy and does not re-
quire users to tune extra hyper-parameters. In addition to
directly modify the synchronization protocols, researchers also
look at using different synchronizations for different cluster
nodes to account for the heterogeneous performance caused
by network and GPU servers [9], [10]. For example, Gaia
used synchronous training for nodes running inside the same
datacenter and fully asynchronous training for inter-datacenter
communication [10]. Additionally, Dutta et al. [11] introduced
a number of SGD variants where the synchronization degree

10



is controlled by a new hyper-parameter. Our work is similar
in that we will also use different synchronizations for a given
training session but with the key difference of deriving the
policies for hybrid synchronization.
Network Optimization for Distributed Training. The iter-
ative process of deep learning makes network an important
bottleneck as not only the model parameters but also the
gradients need to be transferred periodically. To combat the
impact on training performance without impacting the model
quality, prior work explored various techniques that aim to
reduce the communication costs via gradient sparsification or
compression. For example, by only sending the large gradients,
Aji et al. used a heuristic sparsification scheme and showed
a speed gain of 22% [34]. Terngrad and QSGD improved the
network communication efficiency by reducing the gradients to
a few numerical levels [35], [36]. These efforts are orthogonal
to our work but might be combined with Sync-Switch to
achieve further training speedup.

VIII. CONCLUSION

Using the right distributed synchronization protocol at the
right time can significantly improve the training throughput
and produce models with good test accuracy. In this paper,
we devised the first set of adaptive policies, including offline
and online ones, that make such decisions and evaluated
their effectiveness in a prototype system called Sync-Switch
in Google Cloud. We found that training with BSP for only
a small portion of time and then switching to ASP delivers
models of comparable converged accuracy using much shorter
time, compared to training with BSP. For recurring training
jobs, a prevalent scenario in deep learning due to its trial-and-
error nature, we used an offline approach to find the optimal
switch timing. To ensure that switching from BSP to ASP does
not lead to undesirable side effects, we additionally specified
a configuration policy that describes how to adjust critical
hyper-parameters. We showed that Sync-Switch improved the
total training time and the time-to-accuracy by up to 5X and
4X while achieving similar test accuracy through real-world
experiments, compared to training exclusively with BSP. Fur-
ther, with the elastic-based policy, Sync-Switch can effectively
circumvent the performance degradation caused by transient
stragglers and instead leads to a 1.1X speedup under moderate
slowdown scenarios. Additionally, the benefits brought by
Sync-Switch come with reasonably low overhead, e.g., a search
overhead that can be amortized with jobs recurring a few times
and a switching overhead in the order of tens seconds.

IX. ACKNOWLEDGEMENTS

We would like to thank all anonymous reviewers for their in-
sightful comments. This work is supported in part by National
Science Foundation grants #1755659 and #1815619, National
Natural Science Foundation of China (61802377) and Youth
Innovation Promotion Association at CAS, and Google Cloud
Platform Research credits,

REFERENCES

[1] S. Shi et al., “Performance modeling and evaluation of distributed deep
learning frameworks on gpus,” DASC/PiCom/DataCom/CyberSciTech,
2018.

[2] S. Li et al., “Speeding up Deep Learning with Transient Servers,” ICAC,
2019.

[3] F. Yan et al., “Performance Modeling and Scalability Optimization of
Distributed Deep Learning Systems,” SIGKDD, 2015.

[4] T. Ben-Nun et al., “Demystifying Parallel and Distributed Deep Learn-
ing: An In-depth Concurrency Analysis,” ACM Comput. Surv., 2019.

[5] S. Li et al., “Characterizing and Modeling Distributed Training with
Transient Cloud GPU Servers,” ICDCS, 2020.

[6] A. V. Gerbessiotis et al., “Direct Bulk-Synchronous Parallel Algo-
rithms,” J. Parallel Distrib. Comput., 1994.

[7] J. Dean et al., “Large scale distributed deep networks,” NeurIPS, 2012.
[8] X. Zhao et al., “Dynamic stale synchronous parallel distributed training

for deep learning,” ICDCS, 2019.
[9] W. Jiang et al., “A novel stochastic gradient descent algorithm based

on grouping over heterogeneous cluster systems for distributed deep
learning,” CCGRID, 2019.

[10] K. Hsieh et al., “Gaia: Geo-distributed machine learning approaching
lan speeds,” NSDI, 2017.

[11] S. Dutta et al., “Slow and stale gradients can win the race,” arXiv
preprint arXiv:2003.10579, 2020.

[12] Y. Peng et al., “Optimus: An Efficient Dynamic Resource Scheduler for
Deep Learning Clusters,” EuroSys, 2018.

[13] B. Recht et al., “Hogwild: A Lock-Free Approach to Parallelizing
Stochastic Gradient Descent,” NeurIPS, 2011.

[14] A. Or et al., “Resource Elasticity in Distributed Deep Learning,”
Proceedings of Machine Learning and Systems, 2020.

[15] J. Chen et al., “Revisiting distributed synchronous sgd,” arXiv preprint
arXiv:1604.00981, 2016.

[16] K. He et al., “Deep residual learning for image recognition,” CVPR,
2016.

[17] G. Huang et al., “Densely connected convolutional networks,” CVPR,
2017.

[18] B. Kleinberg et al., “An alternative view: When does sgd escape local
minima?” ICML, 2018.

[19] S. Hochreiter et al., “Simplifying neural nets by discovering flat min-
ima,” in NeurIPS, 1995.

[20] N. S. Keskar et al., “On large-batch training for deep learning: Gener-
alization gap and sharp minima,” ICLR, 2017.

[21] Q. Duan, “Cloud service performance evaluation: status, challenges, and
opportunities–a survey from the system modeling perspective,” Digital
Communications and Networks, 2017.

[22] A. Li et al., “CloudCmp: comparing public cloud providers,” ACM IMC,
2010.

[23] J. Xie et al., “Improving mapreduce performance through data placement
in heterogeneous hadoop clusters,” IPDPSW, 2010.

[24] A. Senior et al., “An empirical study of learning rates in deep neural
networks for speech recognition,” ICASSP, 2013.

[25] S. L. Smith et al., “Don’t decay the learning rate, increase the batch
size,” arXiv preprint arXiv:1711.00489, 2017.

[26] P. Goyal et al., “Accurate, large minibatch sgd: Training imagenet in 1
hour,” arXiv preprint arXiv:1706.02677, 2017.

[27] H. Lin et al., “Dynamic mini-batch sgd for elastic distributed training:
learning in the limbo of resources,” arXiv preprint arXiv:1904.12043,
2019.

[28] A. Vaswani et al., “Tensor2tensor for neural machine translation,” CoRR,
2018.

[29] A. Krizhevsky et al., “Cifar-10,” http://www.cs.toronto.edu/∼kriz/cifar.
html, 2017.

[30] C. Coleman et al., “Analysis of dawnbench, a time-to-accuracy machine
learning performance benchmark,” SIGOPS Operating Systems Review,
2019.

[31] X. Gastaldi, “Shake-shake regularization,” arXiv preprint
arXiv:1705.07485, 2017.

[32] F. Chollet, “Xception: Deep learning with depthwise separable convo-
lutions,” CVPR, 2017.

[33] Q. Ho et al., “More effective distributed ml via a stale synchronous
parallel parameter server,” NeurIPS, 2013.

[34] A. F. Aji et al., “Sparse Communication for Distributed Gradient
Descent,” arXiv preprint arXiv:1704.05021, Apr. 2017.

[35] W. Wen et al., “TernGrad: Ternary Gradients to Reduce Communication
in Distributed Deep Learning,” NeurIPS, 2017.

11

http://www.cs.toronto.edu/~kriz/cifar.html
http://www.cs.toronto.edu/~kriz/cifar.html


[36] D. Alistarh et al., “QSGD: Communication-Efficient SGD via Gradient
Quantization and Encoding,” NeurIPS, 2017.

[37] S. Hochreiter et al., “Flat minima,” Neural Computation, 1997.
[38] S. L. Smith et al., “A bayesian perspective on generalization and

stochastic gradient descent,” ICLR, 2018.
[39] P. Chaudhari et al., “Entropy-sgd: Biasing gradient descent into wide

valleys,” Journal of Statistical Mechanics: Theory and Experiment,
2019.

[40] L. N. Smith, “Cyclical learning rates for training neural networks,”
WACV, 2017.

APPENDIX A
ADDITIONAL REMARKS FOR THEORETICAL EXPLANATIONS

This section provides additional remarks for Sync-Switch
protocol policy design described in Section IV-A.

Remark A.1 (Population loss landscape at different scales).
There is much empirical and heuristic evidence that the
population loss is in fact much smoother than the training loss.
For instance, it has been observed that sharp local minima of
the training loss – minima where the training loss is only
low in a small region near the minimum point – oftentimes
do not correspond to a low test loss [19], [20], [37]–[39].
On the other hand, ’flat’ local minima of the training loss–
local minima where the training loss remains low in a wide
region containing the local minimum point– in many cases also
minimize the test loss. Moreover, it has recently been shown
that minimizing a ’smoothed’ version of the training loss can
lead to a test error that is as low as, or oftentimes even lower
than, if one were to minimize the training loss itself. Here the
smoothed loss function is the convolution of the loss function
with the distribution of the batch gradient noise (the variance
of the noise depends on the batch size) [18].

This evidence suggests that the population loss is much
smoother than the training loss, and is in fact closer to a
’smoothed’ version of the training loss convolved with a the
distribution of the batch gradient noise rather than the original
training loss. This suggest that our population loss will have
a landscape that is smooth at a finer scale on the order of
the learning rate used later in the training. On the other
hand, at coarser scales–on the order of the large learning
rate used earlier in the training–we expect the landscape of
the population loss to be much closer to the training loss. In
other words, earlier in the training, when a large step size
is used, the change in the training loss and population loss
at each step should be roughly the same, and the ratio of
the change in the population loss to the change in training
loss should be close to 1. Later in the training, when a much
smaller learning rate is used, this ratio could be very far from
1.

Remark A.2 (Can switching from BSP to ASP also minimize
the training loss?). In the previous discussion we have used
the fact that the population loss is oftentimes much smoother
than the training loss. For this reason, even if one only uses
stale gradients later in the training when the algorithm takes
smaller step sizes, the gradient of the training loss may still
change rapidly at each step of the algorithm despite the fact
that the gradient of the population loss may not be changing

as quickly. This suggests that, while using ASP later in the
training may allow one to effectively minimize the population
loss, it may still not allow one to minimize the training loss.
This is exactly what we observe in our experiments: while
starting with BSP and then switching to ASP allows one to
minimize the test error (and hence the population loss) as
effectively as using static BSP, the training loss remains much
higher than in experiments where static BSP is used.

Remark A.3 (Why not start with ASP and then switch to
BSP?). As noted in the previous discussion, using ASP early in
the training may cause the algorithm to be unstable, preventing
ASP from effectively decreasing the loss value. Thus, even
if one starts with ASP and switches to BSP, the time spent
running ASP early in the training is effectively wasted time.
This means that, starting with ASP and then switching to BSP
does not allow for any speedup over static BSP (and may even
lead to a slightly slower training time than static BSP due to
the time wasted running ASP at the beginning of the training).

Moreover, in our experiments we observe that starting with
ASP and switching to BSP can cause the loss value to get
“stuck” at a relatively high value for a very long time. This
is likely because, if one starts with ASP and then switches
to BSP after decaying the learning rate, the algorithm may
still be in a region with a high loss value at the epoch when
the learning rate is decreased. Since a lower learning rate can
cause SGD to take a much longer time to escape saddle points
of the loss function [40], starting the training with ASP can
cause the algorithm to get stuck for a very long time near a
saddle point with a high loss value even if one then switches
to BSP (Figure 7(c)), .

APPENDIX B
PSEUDO CODE FOR OUR BINARY SEARCH ALGORITHM

In Algorithm 1, we specify a limit for number of settings M
we want to explore, since from the observation in our empirical
experiment, the speedup provided for switching earlier over a
small percentage of workload is negligible. β is the margin
of error for converged accuracy due to the stochastic nature
of deep learning and distributed training, and should either be
specified by the user or set automatically (see Section VI for
details). To further reduce variance, we set the number of runs
for each switch point R. A large R can reduce sub-optimal
results, but increase the search cost. In reverse, a small R can
reduce search cost, but increase the possibility of sub-optimal
results. A is the target converged accuracy in the constraints.

APPENDIX C
ADDITIONAL RESULTS FOR BINARY SEARCH-BASED

OVERHEAD ANALYSIS

Table IV, Table V, and Table VI provide the complete
simulation results to what was presented in Section VI-C1.

Table V details the search cost for the workload of ResNet50
and CIFAR-100 on an 8-worker cluster. Due to the relatively
closer training throughput of BSP and ASP, the search cost
is greater than the other, simpler, workload. Moreover, the
search success probability is also lower for both recurring and

12



Search Setting
(Recurring, BSP runs, candidate runs) Search Cost Amortized

(# of recurrence)
Effective Training

(vs. BSP)
Success

Probability

Baseline: (No, 5, 5) 12.71X 15.79 1.97X 100%
(No, 4, 4) 10.17X 12.63 1.97X 100%
(No, 3, 3) 7.62X 9.47 1.97X 99.2%
(No, 2, 2) 5.07X 6.30 1.97X 82.3%
(No, 1, 1) 2.48X 3.08 2.02X 56.8%
(No, 1, 5) 8.71X 10.82 2.41X 80.4%
(No, 1, 4) 7.16X 8.90 2.37X 78.7%
(No, 1, 3) 5.61X 6.97 2.32X 78%
(No, 1, 2) 4.06X 5.04 2.22X 69.4%
(Yes, 0, 5) 7.71X 9.58 2.59X 100%
(Yes, 0, 4) 6.17X 7.67 2.59X 100%
(Yes, 0, 3) 4.63X 5.75 2.59X 100%
(Yes, 0, 2) 3.07X 3.81 2.61X 79%
(Yes, 0, 1) 1.50X 1.86 2.67X 56.6%

TABLE IV: Cost and performance analysis for experiment setup one.

Search Setting
(Recurring, BSP runs, candidate runs) Search Cost Amortized

(# of recurrence)
Effective Training

(vs. BSP)
Success

Probability

Baseline: (No, 5, 5) 17.86X 44.81 1.12X 100%
(No, 4, 4) 14.28X 35.83 1.12X 93.4%
(No, 3, 3) 10.71X 26.87 1.12X 85.4%
(No, 2, 2) 6.98X 17.51 1.15X 67.3%
(No, 1, 1) 3.26X 8.18 1.23X 37.3%
(No, 1, 5) 12.12X 30.41 1.41X 79.8%
(No, 1, 4) 10.04X 25.19 1.29X 59.2%
(No, 1, 3) 7.75X 19.45 1.29X 49%
(No, 1, 2) 5.65X 14.18 1.24X 48.2%
(Yes, 0, 5) 11.10X 27.85 1.17X 100%
(Yes, 0, 4) 9.05X 22.71 1.17X 100%
(Yes, 0, 3) 6.73X 16.89 1.17X 81%
(Yes, 0, 2) 4.64X 11.64 1.17X 78.1%
(Yes, 0, 1) 2.29X 5.75 1.22X 48.9%

TABLE V: Cost and performance analysis for experiment setup two.

Search Setting
(Recurring, BSP runs, candidate runs) Search Cost Amortized

(# of recurrence)
Effective Training

(vs. BSP)
Success

Probability

Baseline: (No, 5, 5) 7.68X 16.54 1.30X 100%
(No, 4, 4) 6.14X 13.22 1.30X 100%
(No, 3, 3) 4.61X 9.93 1.30X 100%
(No, 2, 2) 3.07X 6.61 1.30X 89.5%
(No, 1, 1) 1.54X 3.32 1.30X 69.7%
(No, 1, 5) 3.67X 7.90 1.63X 68.5%
(No, 1, 4) 3.14X 6.76 1.59X 66.4%
(No, 1, 3) 2.61X 5.62 1.53X 67.4%
(No, 1, 2) 2.07X 4.46 1.49X 77.2%
(Yes, 0, 5) 2.68X 5.77 1.87X 100%
(Yes, 0, 4) 2.14X 4.61 1.87X 100%
(Yes, 0, 3) 1.67X 3.60 1.87X 100%
(Yes, 0, 2) 1.07X 2.30 1.87X 100%
(Yes, 0, 1) 0.54X 1.16 1.87X 100%

TABLE VI: Cost and performance analysis for experiment setup three.

new jobs. Reducing the search times to be four leads to a
search cost of 9.05X of the BSP training and an amortized
training cost of 22.71 recurring jobs. The searching process
also produces less effective training of 1.17X. In terms of a
new training job, to ensure the success rate to be more than
99%, running five times per setting is recommended, leading to
a search cost of 17.86X amortized to 44.81 training sessions.
However, even though the search cost is higher than the others
for this setup, the effective training (1.12X) shows it is still
more efficient than training with BSP.

Table VI summarizes the cost and performance analysis for
the workload of ResNet32 and CIFAR-10 with a cluster of size
16. We show that the search cost can be reduced to 0.54X
the cost of BSP, cheaper than 1 BSP training session, due
to only searched once. When facing a new training job, it is
similarly safe to run three times per setting for guaranteed
high success probability, for the cost of 4.61X of the BSP
training. The search cost can be amortized with ten recurring
jobs, similar to training the workload with a cluster of size 8.

13



Algorithm 1 Our Binary Search-based Algorithm for Deriving
Timing Policies

1: Inputs: Accuracy threshold β, num. of settings M , runs
per setting R, target accuracy A (optional)

2: if A is not provided then
3: Train the model with BSP R times and record con-

verged accuracy: α1 · · ·αr
4: Set A = 1

R

∑R
i=1 αr

5: end if
6: upper = 100, lower = 0,m = 0, α′ = 0
7: while m < M do
8: r = 0
9: switching timing = (upper+lower)

2
10: while r < R do
11: Train switching timing% of workload with BSP,

then switch to ASP
12: Record the converged accuracy αr
13: α′ = α′ + αr
14: r = r + 1
15: end while
16: if α′

R ∈ [A− β,A+ β] then
17: upper = switching timing
18: else
19: lower = switching timing
20: end if
21: m = m+ 1
22: end while

Additionally, Sync-Switch can produce up to 1.87X of effective
training compared to training with BSP.

Figure 16 summarizes the normalized search cost to training
with BSP for all three experiment setups.

14



1 2 3 4 5
Search attempts per setting

2.5

5.0

7.5

10.0

12.5

N
or

m
al

iz
ed

 s
ea

rc
h 

co
st Ground TruthRecurring job

bn=n
bn=1

(a) Exp. setup 1.

1 2 3 4 5
Search attempts per setting

5

10

15

N
or

m
al

iz
ed

 s
ea

rc
h 

co
st Ground TruthRecurring job

bn=n
bn=1

(b) Exp. setup 2.

1 2 3 4 5
Search attempts per setting

2

4

6

8

N
or

m
al

iz
ed

 s
ea

rc
h 

co
st Ground TruthRecurring job

bn=n
bn=1

(c) Exp. setup 3.

Fig. 16: Search cost and performance trade-off. We vary the number of measurement runs for each candidate switching timing for both
recurring and new training jobs. Red markers denote the successful settings; we say a setting is successful if it obtains the ground-truth
switch timing with ≥ 99% probability.

15


	I Introduction
	II Background
	II-A Distributed Deep Learning
	II-B Distributed Parameter Synchronization Protocols

	III Problem Statement and Solution Overview
	IV Sync-Switch Policy Design
	IV-A Protocol Policy: Which to Use and in What Order?
	IV-A1 Empirical Analysis
	IV-A2 Theoretical Explanations

	IV-B Timing Policy: When to Switch?
	IV-B1 Offline Policy via Binary Search
	IV-B2 Online Policies for Handling Stragglers

	IV-C Configuration Policy: How to Adjust Hyper-parameters?

	V Sync-Switch Implementation
	VI Evaluation
	VI-A Evaluation Setup and Methodology
	VI-B Performance of Sync-Switch
	VI-B1 End-to-end Comparison
	VI-B2 Generality Analysis of Our Observations
	VI-B3 With Transient Stragglers

	VI-C Overhead of Sync-Switch
	VI-C1 Binary Search Cost
	VI-C2 Runtime Overhead


	VII Related Work
	VIII Conclusion
	IX Acknowledgements
	References
	Appendix A: Additional remarks for theoretical explanations
	Appendix B: Pseudo Code for Our Binary Search Algorithm
	Appendix C: Additional Results for Binary Search-based Overhead Analysis

