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Abstract
Cloud spot markets enable users to bid for compute re-

sources, such that the cloud platform may revoke them if

the market price rises too high. Due to their increased risk,

revocable resources in the spot market are often signifi-

cantly cheaper (by as much as 10×) than the equivalent non-

revocable on-demand resources. One way to mitigate spot

market risk is to use various fault-tolerance mechanisms,

such as checkpointing or replication, to limit the work lost

on revocation. However, the additional performance over-

head and cost for a particular fault-tolerance mechanism is

a complex function of both an application’s resource usage

and the magnitude and volatility of spot market prices.

We present the design of a batch computing service for

the spot market, called SpotOn, that automatically selects

a spot market and fault-tolerance mechanism to mitigate

the impact of spot revocations without requiring application

modification. SpotOn’s goal is to execute jobs with the per-

formance of on-demand resources, but at a cost near that of

the spot market. We implement and evaluate SpotOn in sim-

ulation and using a prototype on Amazon’s EC2 that pack-

ages jobs in Linux Containers. Our simulation results using

a job trace from a Google cluster indicate that SpotOn low-

ers costs by 91.9% compared to using on-demand resources

with little impact on performance.

Categories and Subject Descriptors D.4.7 [Organization
and Design]: Batch Processing Systems

General Terms Performance, Reliability, Measurement

Keywords Spot Market, Fault-tolerance, Batch job

1. Introduction
Infrastructure-as-a-Service (IaaS) cloud platforms are be-

coming increasingly sophisticated, and now offer a wide va-
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riety of resources under contract terms that expose a trade-

off between cost and availability. For example, Amazon’s

Elastic Compute Cloud (EC2) offers contracts for spot “in-

stances,” i.e., virtual machines (VMs) bound to a specified

amount of computation, storage capacity, and network band-

width. Users place a bid for spot instances (in dollars per

unit time of use) and receive them only when the spot price,

which changes in real time, falls below their bid price. As

long as the spot price is below their bid price, users have ac-

cess to the resources and pay the spot price for them. How-

ever, once the spot price exceeds the bid price, EC2 may

unilaterally reclaim the resources, while giving users only a

brief (two minutes in EC2 [4]) warning to vacate them.

Spot instances differ from on-demand instances, which

users relinquish voluntarily and EC2 cannot revoke. While

the price of spot instances is significantly less (often by a fac-

tor of ten or more) than the equivalent on-demand instances,

the risk associated with using them is significantly higher,

since EC2 may revoke them at any time if the spot price

rises. While their low price makes spot instances attractive,

the spot market introduces additional market and application

dynamics that increase the complexity of using it.

• Market Complexity. EC2’s global market for instance

types is massive and diverse, as it operates a different

spot market with a different dynamic price for each in-

stance type in each availability zone of each region. Cur-

rently, EC2 operates more than 2000 distinct spot mar-

kets across 9 regions and 26 availability zones,1 each

with a different dynamic price per unit of computational

resources. Given the spot market’s size, selecting the in-

stance type, region, and zone that yields the lowest over-

all cost per unit of work is highly complex.

• Application Complexity. The spot market also intro-

duces new dynamics for applications, which must be

able to gracefully handle the sudden revocation (and al-

location) of resources as the spot price changes. Ama-

zon recommends using spot instances for simple delay-

tolerant (or optional) tasks that store their persistent state

on remote disks, e.g., in Amazon’s Elastic Block Store

(EBS), enabling them to simply pause and resume their

1 Each availability zone can be thought of as a different data center within a

distinct geographical region, e.g., US-East, US-West (Oregon), etc.
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Rank Zone Type Volatility Spot (¢) On-demand (¢)

262 ap-northeast-1c m1.large 137.51 0.50 5.23

261 ap-northeast-1c m1.xlarge 82.10 0.50 5.23

282 us-west-1a c1.xlarge 20.36 0.52 3.06

46 us-west-1a m2.4xlarge 14.49 0.28 4.33

299 ap-southeast-1b c1.medium 9.61 0.57 3.06

163 us-west-1a m2.2xlarge 9.60 0.34 4.33

18 us-west-1a m3.xlarge 8.83 0.25 2.63

307 ap-southeast-1a c1.medium 8.34 0.62 3.06

347 eu-west-1a cg1.4xlarge 6.21 1.64 6.66

39 us-west-1c m2.2xlarge 6.07 0.26 4.33

Figure 1. Scatterplot of the rank in spot prices’ volatility and magnitude for 353 markets (left). Table of the top 10 most

volatile markets (in revocations/day when bidding the on-demand price) and their per-hour spot and on-demand price (right).

execution whenever EC2 revokes or allocates spot in-

stances, respectively [1]. Applications may also leverage

various fault-tolerance mechanisms, such as checkpoint-

ing, to limit the work lost on each revocation. In this

case, applications may continue execution by replacing

revoked instances with instances from a different market.

Of course, different fault-tolerance mechanisms impose

different performance penalties (and thus different costs)

based on each application’s resource usage characteristics.

Thus, optimizing an application’s performance and cost is

challenging: it requires managing volatile market and appli-

cation dynamics by determining i) where to execute an appli-

cation based on global spot market prices and volatility and

ii) what fault-tolerance mechanism to employ based on an

application’s resource usage. In this paper, we present the de-

sign of a batch computing service, called SpotOn, to specifi-

cally optimize the cost of running non-interactive batch jobs

on spot instances. By focusing narrowly on batch jobs, Spo-

tOn has the freedom to i) select from a wide set of available

fault tolerance mechanisms and ii) exploit favorable spot

markets across availability zones and regions.

SpotOn enables a user to select an instance type to run

their job with the goal of achieving similar performance as

running on an on-demand instance, but at a price near that of

spot instances. To do so, SpotOn dynamically determines i)

the best instance type and spot market (in a particular zone

and region) to run the job (which may differ from the user’s

choice) and ii) the fault-tolerance mechanism that best bal-

ances the risk of revocation with the overhead of the mech-

anism. Our hypothesis is that by judiciously selecting the

fault-tolerance mechanism and spot market, SpotOn can de-

crease the cost of running jobs, without significantly increas-

ing the job’s running time (and in some cases decreasing it),

compared to using on-demand instances. In evaluating our

hypothesis, we make the following contributions.

Fault-tolerance Modeling. We review existing systems-

level fault-tolerance mechanisms, and derive simple models

that capture their overhead as a function of a job’s resource

usage. The mechanisms fall broadly into three categories:

i) reactively migrating a job prior to a revocation, ii) proac-

tively checkpointing memory and local disk state, and iii)

replicating computation across multiple instances.

Selection and Bidding Policies. Based on our models, we

derive a greedy cost-aware selection policy that minimizes

each job’s expected cost by selecting i) the spot market and

bid to run a job, ii) the fault-tolerance mechanism to use and

how to use it, and iii) whether to use local versus remote I/O.

Implementation and Evaluation. We implement SpotOn

in simulation and using a prototype on EC2, and evaluate

the effect of our greedy cost-aware policy on performance

and cost. Our prototype packages jobs in Linux Containers

(LXC) to facilitate efficient checkpointing and migration.

Our results on a Google cluster trace indicate that SpotOn

lowers costs by 91.9% compared to using on-demand re-

sources with little impact on performance.

2. Background and Overview
Our work assumes an IaaS platform that sells resources in a

market, which sets a resource price that changes dynamically

based on supply and demand. In this paper, we focus on EC2

due to the large size and diversity of its global spot market,

although Google recently introduced preemptible instances,

which have similar properties as spot instances [3].

2.1 Background

EC2 offers a wide range of VM (or instance) types with

different resource allotments. Each instance type is available

in multiple geographic locations (or regions), where each

location includes a cluster of data centers (or availability
zones). EC2 operates a separate spot market with a distinct

dynamic spot price for each instance type in each zone,

such that, if the spot price for an instance type exceeds

a user’s bid price for it, the platform revokes, i.e., shuts

down, the instance after a brief warning, e.g., two minutes

in EC2 [4]. Finally, EC2 also offers the same instance types

in the on-demand market for a fixed price, such that the

platform cannot revoke them. We consider these fixed-price

on-demand instances as another spot market where the price

is stable and there is a 0% revocation probability.

Our work focuses narrowly on designing a service to run

non-interactive batch jobs. While these jobs may either be

sequential or parallel, we consider individual jobs and not
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multi-job workflows, e.g., where multiple jobs execute as

part of a sequential (or graphical) pipeline with each job

passing its output as the input to one or more other jobs.

We also assume jobs are idempotent, since, to mitigate the

impact of resource revocations, SpotOn must be capable of

rolling back to a previous checkpoint or replicating a job’s

computation on multiple instances.

Finally, SpotOn uses estimates of job runtime and re-

source usage to guide the cost-aware selection of a spot

market and fault-tolerance mechanism for each job. Impor-

tantly, SpotOn’s estimates need not be highly accurate, as

our experiments in Section 6 demonstrate that all cost-aware

policies are more cost-effective than running on on-demand

machines. While there is substantial prior work on job run-

time estimation and resource usage, e.g. [7, 14, 20], in prac-

tice, users often submit thousands of the same type of job,

e.g., to conduct parameter space searches, with the same

resource characteristics, which enables batch schedulers to

profile them. SpotOn may use any available technique to

estimate job runtime and resource usage. In this paper, we

assume SpotOn can profile a job’s resource usage a priori
and characterize it as a simple vector specifying its running

time, memory footprint, and the fraction of time waiting on

I/O versus using the CPU on a reference instance type.

An important premise behind our work is that spot mar-

kets and jobs exhibit a wide range of characteristics. Figure 1

gives some indication of the diversity in price characteris-

tics across different EC2 spot markets. The figure shows a

scatterplot of the rank of 353 markets in terms of their av-

erage spot price and volatility over the past three months

(left), which demonstrates that markets differ widely in their

combination of volatility and price, i.e., the lowest price is

not always the least volatile. The figure also lists the top

10 most volatile markets and shows that their average spot

price2 is as much as 10× less than the corresponding on-

demand price. We capture volatility in revocations/day when

bidding the on-demand price, since users have no incentive

to pay more than the on-demand price for spot instances.

Similarly, application resource usage is diverse: Figure 2

shows a scatter plot of CPU, memory, and I/O resource us-

age for jobs in a Google cluster trace (normalized to the 99th

percentile value) [15]. As we discuss, the choice of fault-

tolerance mechanism is a function of both resource usage

and spot price dynamics, and is likely different for each job.

2.2 SpotOn Overview

Given the assumptions above, SpotOn offers a service that

enables users to select an instance type to execute their batch

job. SpotOn’s goal is to complete the job in near the time it

would take on an on-demand instance for a cost near that of

running on a spot instance. Figure 3 depicts SpotOn’s archi-

tecture, which accepts job submissions as Linux Containers

(LXC). We choose to package batch jobs within containers

2 We exclude periods where the spot price exceeds the on-demand price.

(a) CPU v.s Memory. (b) CPU v.s. IO. (c) Memory vs. IO.

Figure 2. Scatter-plot of normalized CPU, memory, and I/O

resource usage per task in a Google cluster trace [15].

for a number of reasons. First, containers are convenient be-

cause they encapsulate all of a job’s dependencies similar

to a VM. Second, containers include efficient checkpointing

and migration mechanisms, which SpotOn requires; unlike

with VMs, the size of a container checkpoint scales dynami-

cally with a job’s memory footprint. Third, containers enable

SpotOn to partition a single large instance type into smaller

instances, which makes a broader set of spot markets avail-

able to run a job. Finally, containers require only OS support,

and do not depend on access to underlying hypervisor mech-

anisms, which are typically not exposed by cloud platforms.

Based on a job’s expected running time and resource us-

age profile, SpotOn monitors spot prices in EC2’s global

spot market and selects both the market and fault-tolerance

mechanism to minimize the job’s expected cost, without sig-

nificantly affecting its completion time. SpotOn also chooses

whether the job should use locally-attached or remote stor-

age, e.g., via EBS. After making these decisions, SpotOn

acquires the chosen instance(s) from the underlying IaaS

platform, configures the selected fault-tolerance mechanism,

and executes the job within a container on the instance(s).

Upon revocation, SpotOn always continues executing a

job on another instance in another market. As we discuss,

there is a penalty associated with revocation based on a job’s

resource usage and chosen fault-tolerance mechanism.

3. Fault-tolerance Mechanisms and Models
SpotOn executes jobs on spot instances when they are

cheaper than the equivalent on-demand instances, and then

employs fault-tolerance mechanisms to mitigate the im-

pact of revocations. Note that SpotOn employs systems-

level variants of these mechanisms, and requires no appli-

cation modifications. Our fault-tolerance mechanisms fall

into three broad categories: i) reactive job migration prior to

a revocation, ii) checkpointing of job state to remote stor-

age, and iii) replicating a job’s computation across multiple

instances. Each mechanism incurs different overheads (and

costs) during normal execution and upon revocation based

on a job’s resource usage. Figure 4 depicts these overheads,

which we capture using the simple models described below.

3.1 Reactive Migration

The simplest fault-tolerance mechanism is to migrate a job

immediately upon receiving a warning of impending revoca-

tion. Since EC2 provides a brief two-minute warning, Spo-
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Figure 3. Depiction of SpotOn’s Architecture

tOn can use this approach for jobs that are capable of check-

pointing their local memory and disk state to a remote disk

within two minutes. The time to checkpoint a job’s state is a

function of both the size of its local memory and disk state

based on the network bandwidth and disk throughput be-

tween the job’s VM instance and the remote disk. Of course,

if a job’s checkpoint does not complete within two minutes,

this approach risks a failure that requires restarting a job.

While there are many migration variants, such as live pre-

copy [5] and post-copy [8] migration, a simple stop-and-

copy migration is the optimal approach for batch jobs that

permit downtime during migration. To reduce downtime,

live migration extends (often significantly) the total migra-

tion time. In addition, live migration requires a destination

host to be available during the migration process. However,

it may take over 90 seconds to acquire and boot a new on-

demand instance in EC2 [10], and it takes even longer to

acquire and boot a spot instance (even when the bid price

exceeds the spot price). Thus, even if SpotOn immediately

requests a new on-demand instance to host a job, it leaves

at most 30 seconds of overlap to complete a live migration,

which drastically reduces the jobs that are amenable to reac-

tive migration (based on the size of the local state).

Given that reactive migration incurs only a modest down-

time at each revocation, it is generally the best option if it

is possible. However, migration has some important limi-

tations and drawbacks. First, only jobs with small mem-

ory footprints and local disk state can leverage migration.

As our experiments show, even within an availability zone,

the combined memory and local disk state must be less

than 4GB to ensure SpotOn is able to reliably complete a

migration within the two minute revocation warning time.

Thus, migration generally precludes using any local disk

state (even within an availability zone), which results in in-

creased running time (and additional cost) for I/O-intensive

applications. Reactive migration is also not possible across

zones/regions, since there is much less network bandwidth

available between zones/regions and it requires migrating

much more state, as remote disks are not available across

zones/regions in EC2. As a result, reactive migration cannot

exploit attractive spot markets across multiple zones/regions.

Below, we model the migration time Tm for a job as a

function of the size of its memory footprint (M) and local

disk state (D), the average I/O throughput (IOPS) of the

remote disk, and the available network bandwidth (B). We

define Rb = min(B, IOPS) and use Rs
b and Rr

b to represent

the bottleneck when saving and restoring a job, respectively.

Tm =
M+D

Rs
b

+
M+D

Rr
b

(1)

The first term captures the time to save the memory and

local disk state to a remote disk, while the last term captures

the time to restore it. Since the job is paused over Tm, the

migration time also represents the downtime (or overhead)

associated with each migration. Note that each migration in-

curs a cost based on Tm, since SpotOn must pay for resources

during this time but the job does no useful work. Thus, the

overhead (and cost) for reactive migration is a function of the

magnitude of Tm and the market’s volatility, i.e., the number

of revocations over the job’s run time.

3.2 Proactive Checkpointing

Proactive checkpointing is an extension of migration that

stores checkpoints at periodic intervals. The per-checkpoint

latency Tc to checkpoint a job’s state to remote disk is equiv-

alent to the first term of the time to migrate as shown below.

Note that, while continuous checkpointing mechanisms ex-

ist [6, 17], they incur a higher overhead than necessary for

batch jobs, which permit much coarser periodic checkpoints.

Tc =
M+D

Rs
b

(2)

Unlike reactive migration, proactive checkpointing is ap-

plicable to any job, not just those with small memory foot-

prints and local disk state. With this approach, the number of

checkpoints is not related to market volatility and the num-

ber of revocations, but on a specified checkpointing interval

τ . Thus, the total time spent checkpointing a job with run-

ning time T is T
τ ∗Tc. As before, we assume the job pauses

during each checkpoint, which increases the job’s running

time and cost. As with reactive migration, there is also an ad-

ditional cost associated with restoring a job after each revo-

cation, such that restoring across zones/regions is often pro-

hibitively expensive, since it requires migrating both mem-

ory state and any persistent state. Finally, there remains a

tradeoff between using local versus remote storage: using

local storage incurs a higher checkpointing overhead but de-

creases the running time of I/O-intensive jobs. In general,

since checkpointing the local disk is time-consuming, jobs

only use remote disks when proactively checkpointing.

Importantly, proactive checkpointing not only incurs an

overhead for each checkpoint, but also requires rolling a job

back to the last checkpoint on each revocation. For example,

if a platform revokes a job right before a periodic checkpoint,

then it loses nearly an entire interval τ of useful work.

Thus, proactive checkpointing presents a tradeoff between

the overhead of checkpointing and the probability of losing
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Figure 4. Each fault-tolerance mechanism incurs a different overhead during normal execution and on revocation. Here,

reactive migration incurs an overhead of Tm on each revocation, proactive checkpointing incurs an overhead of Tc for each

checkpoint, and replicating computation incurs an overhead of TL based on the work lost when both replicas are revoked.

work on revocation: the smaller the interval τ the higher

the checkpointing overhead during normal execution but the

lower the probability of losing work on revocation and vice

versa. This overhead is a function of a job’s resource usage,

i.e., its memory footprint, and the spot market’s volatility.

3.3 Replicating Computation

Finally, we consider replicating computation on multiple

spot instances across multiple markets. When replicating

computation on multiple instances, the overhead is related

to the magnitude and volatility of spot prices in the mar-

ket, and not the size of a job’s memory and local disk state.

As a result, replicating computation provides SpotOn use-

ful flexibility along multiple dimensions relative to reactive

migration and proactive checkpointing, as listed below.

• Enables Local Storage. Unlike with checkpointing

and migration, replicating a job enables it to use local

storage, since there is no need to save local disk state

prior to revocation. I/O-intensive jobs may execute sig-

nificantly faster when using local storage, as opposed

to using remote storage with checkpointing/migration.

• Exploits Multiple Zones/Regions. Replicating com-

putation enables SpotOn to exploit multiple zones/regions.

With checkpointing and migration, the overhead of

transferring state between zones/regions is prohibitively

expensive. In contrast, SpotOn can replicate a job in

two or more different zones/regions, enabling it to ex-

ploit price drops in either zone/region.

• Supports Parallel Jobs. Replicating jobs also more

easily accommodates parallel jobs, since taking dis-

tributed checkpoints is significantly more complex than

checkpointing a single node. Since LXC does not sup-

port distributed checkpoints, SpotOn is currently only

able to support parallel jobs by replicating them.

SpotOn considers replicating computation in two differ-

ent, but complementary, ways, as we describe below.

3.3.1 Replication across Spot Instances

SpotOn may execute multiple replicas of a job across two

or more spot instances in different markets. These markets

may be in different zones/regions or within the same avail-

ability zone but on different instance types. Since the price

of spot instances is often much more than a factor of two

less than an equivalent on-demand instance, deploying mul-

tiple spot instances is often cheaper than executing a job on

an on-demand instance. Assuming the price of spot instances

across markets is independent, then the probability of at least

one instance completing before a revocation is much higher

than the job completing on any single instance.

Specifically, based on each spot market’s historical prices

and for a given bid price, we can compute a revocation prob-

ability Pr that a job with running time T is revoked before

it completes. Given Pr in each market, the completion prob-

ability Pc that at least one of n job replicas across different

spot markets completes is one minus the probability that all

of the jobs are revoked, or Pc = 1−
n
∏

k=1
Pk

r . Of course, the

longer a job’s running time, the higher the revocation proba-

bility Pr at each instance, and the lower the probability Pc the

job will not complete and need to be re-started. Thus, repli-

cation across spot instances is better for shorter jobs, since

they have a lower probability of all replicas being revoked.

3.3.2 Replication on On-demand Instances

While replicating computation across many spot markets is

useful, there always exists a non-zero probability of all repli-

cas being revoked, which increases with the running time

of the application and does not work well for parallel jobs

(where a revocation of any instance requires restarting the

job). Thus, another approach to replication is to execute a

replica on an on-demand instance, which has a 0% revoca-

tion probability. Unlike replication across spot instances, this

approach never requires re-starting a job from the beginning

even for long-running jobs where there is a high probability

of all replicas being revoked.

Of course, if SpotOn were to replicate a job on the same

on-demand instance type selected by the user, there would

be no benefit in using spot instances. As a result, SpotOn

multiplexes multiple jobs on one on-demand instance, which

effectively serves as a replication backup server. In this case,

each job is given an isolated partition of the on-demand

server’s resources, such that the application executes slower

than on a dedicated spot instance. SpotOn then accounts for

the cost of the on-demand instance by partitioning its cost in

proportion to the fraction of resources each job replica uses.

On revocation, SpotOn loses any work associated with

the primary spot instance, which causes the job’s progress to

revert to that of the backup replica. SpotOn may then simply

run the job at the slower rate, or acquire a spot instance in

another market and migrate the backup server’s job replica
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to it. This approach is similar to checkpointing in that, if the

primary spot instance is revoked, there is some loss of work,

since the backup replica’s progress is behind the primary,

but the job does not have to restart from the beginning.

As before, there is a tradeoff between cost and the amount

of work lost on a revocation: the higher the performance

(and cost) of the backup replica, the less work is lost on a

revocation and vice versa. Of course, the approach differs

from checkpointing in that the work lost on each revocation

is a function of the difference in resources on the primary

and the backup, rather than a fixed checkpointing interval τ .

Another difference is that the cost overhead of replicating

computation is based on the spot prices in various markets,

and is independent of the job’s memory and disk footprint.

4. SpotOn Selection and Bidding Policies
For each job, SpotOn must determine in which spot market

to execute it (and how to bid) and which fault-tolerance

mechanism to use, with the goal of completing the job near

the performance of an on-demand instance at a cost near

that of spot instances. SpotOn must also determine where

to resume a job if its current server is revoked.

Before detailing SpotOn’s policies, we first define a job’s

slack, as a percentage of its estimated running time, which

captures the additional time available for SpotOn to check-

point and migrate jobs over their lifetime. SpotOn consid-

ers slack to be a user preference: the greater the slack the

user permits, the more frequently SpotOn will checkpoint

the job, and, thus, the longer the completion time when us-

ing checkpointing. In particular, for a job with slack S and

time to checkpoint (from the previous section) Tc, the num-

ber of times SpotOn may checkpoint the job over its running

time T without exceeding the slack is T ·S
Tc

. Thus, the slack

dictates a regular checkpointing interval of τ = Tc
S .

4.1 Basic Server Selection Policy

We first define a basic policy that always chooses the spot

market with the lowest normalized price for resources with-

out considering the market’s volatility. After choosing the

lowest-cost spot market, this policy reactively migrates a job

if it is possible, i.e., if its memory is less than 4GB, and

always uses proactive checkpointing otherwise. On revoca-

tion, our basic policy migrates the job to an on-demand in-

stance where it runs for the remainder of its lifetime.

4.2 Cost-aware Server Selection Policy

SpotOn employs a greedy cost-aware policy that selects the

spot market and fault-tolerance mechanism in tandem to

minimize a job’s expected cost per unit of running time

(modulo overhead) until it is either revoked or completes,

given historical spot market prices and the job’s resource

usage and remaining running time. SpotOn generally re-

evaluates its decision whenever a job’s state changes, e.g.,

due to a revocation, in order to select a new instance type

and market to migrate the job. That is, on revocation, SpotOn

re-executes the greedy cost-aware policy to determine where

to restore the job and the fault-tolerance mechanism to use

based on the job’s remaining running time.

We profile each spot market as a function of jobs’ remain-

ing running time. In particular, we define a random variable

Zk for each spot market k to represent the amount of time

a job can run on a spot instance without being revoked. We

then define the probability that Zk is less than a job’s re-

maining running time Pz = P(Zk ≤ T ), which represents the

probability that a job’s spot instance from market k is re-

voked before it completes. We use E(Zk) to denote the ex-

pected time a job executes before being revoked. For a given

running time T , we can compute both P(Zk ≤ T ) and E(Zk)
over a recent window of prices, e.g., the past day, week, or

month. For each spot market k, we also maintain the aver-

age spot price C̄k
sp, excluding periods where the spot price

exceeds the on-demand price for the equivalent instance. We

use these values in computing the expected cost E(Ck) for

running each job in a particular spot market k.

Given a job’s resource vector, our cost-aware policy uses

a brute-force approach that simply computes the expected

cost of using each fault-tolerance mechanism until the job

either completes or is revoked across each spot market, and

then chooses the least cost mechanism and market. Below,

we show how to compute the expected cost for each of our

fault-tolerance mechanisms. Note that SpotOn always con-

figures jobs employing reactive migration and checkpointing

to use remote storage, e.g., EBS in EC2, which may increase

the running time of I/O-intensive jobs, and always configures

jobs replicated across spot instances to use local storage.

SpotOn adjusts the expected running time of the job based

on its rate of I/O and the performance difference between lo-

cal and remote I/O, such that using remote I/O has a longer

running time for an I/O-intensive job than when using local

I/O. Thus, when computing the costs, the input running time

for each mechanism for the same job may differ based on

whether the mechanism uses local or remote storage. Below,

we detail the steps for computing the expected cost E(Ck)
and job execution time E(Tk) for each mechanisms; the cost

per unit of running time is then calculated as
E(Ck)
E(Tk)

.

4.2.1 Expected Cost of Migration

In this case, as shown below, the expected cost until the job

either completes or is revoked is the probability the job is

revoked (which is a function of its remaining running time)

multiplied by the cost of running the job to the first revoca-

tion plus the probability the job finishes without being re-

voked multiplied by the cost of running the job to comple-

tion. On each revocation, the job incurs migration overhead

Tm. Recall that Pz represents the revocation probability when

running on a spot instance from market k.

E(Ck) =
[
Pz ∗ (E(Zk) + Tm) + (1 − Pz) ∗ T

] ∗ C̄k
sp (3)
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After computing the expected cost E(Ck), we compute

the cost per unit of running time by dividing the expected

job execution time until the job either finishes or is evicted,

or E(Tk) = (1−Pz)∗T +Pz ∗E(Zk). Since reactive migration

is the best option if migration is feasible, SpotOn generally

uses it whenever a job’s memory footprint permits migration

within the two minute warning.

4.2.2 Expected Cost of Checkpointing

The expected cost of checkpointing is based on the check-

pointing interval (defined by the slack) and the potential loss

of work due to revocations. As above, we compute the ex-

pected cost until a job either completes or is revoked. How-

ever, in computing the expected job running time E ′(Tk), we

subtract the useful work completed by the job based on the

checkpointing interval and any work lost on the revocation.

E ′(Tk) = E(Tk)− E(Tk)

τ
∗Tc − τ

2
(4)

Here, E(Tk) is the same as with reactive migration, the

second term represents the downtime due to checkpointing

over E(Tk), and τ
2 is the expected work lost on each revo-

cation, assuming that revocations are uniformly distributed

over each checkpoint interval.

4.2.3 Expected Cost of Replication

Finally, we derive the cost for each replication variant.

Replication across Spot Instances. When replicating across

spot instances, we do not re-run our selection policy on each

revocation. Instead, if all spot instances are revoked, we re-

start the job on an on-demand instance to ensure the job

completes. The expected cost when replicating a job with

remaining running time T across n spot markets is the ex-

pected cost if all spot instances are revoked plus the expected

cost if the job completes, weighted by the probability of each

event occurring. Here, Pc and Pr are the probability of a job

completing and being revoked from Section 3.3.1; Ck
od is the

price of the on-demand instance for market k; and E(Tk) is

the expected running time until the instance from market k
is revoked.

E(Ck) = Pr
( n

∑
k=0

C̄k
spE(Tk) +Ck

od ∗ T
)
+ Pc

n

∑
k=0

C̄k
spT (5)

As before, we use the expected cost to compute a cost per

unit of the expected amount of useful work completed.

Replication on On-demand Instances. Computing the cost

of replicating on a “slower” and cheaper on-demand instance

is similar to checkpointing, except that we incur an addi-

tional cost for the discounted on-demand instance. Here,

we assume SpotOn pays the same price for the backup

on-demand instance as it does for the primary spot in-

stance, which mirrors the price for replicating across two

spot instances above, and makes the different replication

approaches comparable. As we discuss in Section 4.3, our

bidding policy only replicates across two spot instances. In

this case, if the ratio of the on-demand to spot price is r,

then we assume the remaining running time of our job on

the backup instance is r ∗Ti, since we partition the resources

of the backup on-demand instance based on its price. The

expected cost below is then similar to checkpointing, but

multiplies the price of the spot instance by a factor of two

to account for the cost of the primary spot instance and the

backup on-demand instance.

E(Ck) = Pz ∗ (2E(Tk)C̄k
sp) + (1 − Pz) ∗ (2TC̄k

sp) (6)

With on-demand replication, if our primary spot instance

is revoked, the useful work done is dictated by the progress

of the backup server, which is running a factor of r slower

than the primary. Note that unlike checkpointing, the useful

work lost on each revocation is a function of the ratio r
and not a fixed checkpointing interval τ . Thus, while the

fraction of work lost on a revocation at any time remains the

same, the absolute work lost increases with job running time.

Developing mixed policies that periodically checkpoint the

on-demand backup server to mitigate the impact of using

on-demand replication for long running jobs is future work.

Thus, we can compute the expected job run time as below.

E(Tk) = Pz ∗ E(Tk)

r
+(1−Pz)∗T (7)

4.3 Bidding Policies

The probability of revocation and the expected time to a

revocation in any spot market is based on the bid’s value,

which SpotOn can adjust. Note that, since EC2 caps the

maximum bid price at 10× the on-demand price, SpotOn

cannot reduce the probability of revocation to 0%. Since we

assume that on-demand instances are available (of some type

in some availability zone/region) at a fixed price with a 0%

probability of revocation, we define a bidding budget such

that SpotOn does not exceed the on-demand price for spot

instances. Since migration and checkpointing impose some

performance overhead that increase a job’s running time and

cost, SpotOn bids a price equal to the cost of running the job

on an on-demand instance divided by the expected running

time on the spot instance (including any overhead).

SpotOn could also adjust its bid price to alter a spot in-

stance’s revocation probability. However, in prior work [16],

we show that bidding slightly more (or less) than the on-

demand price does not significantly decrease (or increase)

the revocation probability, as current market prices tend to

spike from very low to very high. Thus, we do not consider

adjusting the bid price in this paper, although our approach

could be extended to support such variable bid strategies.

With replication, there is no performance overhead during

normal execution. In this case, when replicating across spot

instances, we divide the on-demand price across the degree

of replication and bid that value for each spot instance.

Figure 5 plots the probability of completing a job without

all replicas being revoked as a function of job duration for

 335



Figure 5. When replicating across spot instances, a repli-

cation degree greater than two decreases the probability of

completing the job before all instances are revoked.

different replication degrees across all spot markets in the

us-east-1a availability zone. The figure demonstrates that,

while replication degree of two improves the probability

of completion, especially for short jobs, higher replication

degrees decrease the probability due to spreading the bidding

budget across more instances. As a result, in this paper, when

replicating across spot instances, we only use a replication

degree of two. Finally, when replicating on a backup on-

demand server, we discount our bid to ensure the maximum

price we pay for both the spot instance and the on-demand

backup server is not greater than the price of a dedicated on-

demand instance based on the ratio r above.

5. Prototype Implementation
We implement a prototype of SpotOn on EC2 in python.

The prototype includes a job manager hosted on an on-

demand instance and agent daemons that run on each spot

instance. Users package SpotOn jobs as Linux Container

(LXC) images, which include the entire state necessary to

run the job (including any operating system libraries). The

image includes a start script at a well-known location within

the image that SpotOn executes to launch the job. Users store

the image in a known directory inside an EBS snapshot in

EC2, which they authorize SpotOn to access. Users then

submit jobs by selecting their instance type and provide

SpotOn an identifier for the EBS snapshot hosting their job’s

container image. To control the use of local versus remote

EBS storage, jobs write intermediate data to and from a

well-known directory, which SpotOn configures to be either

attached to an EBS volume or attached to the local disk.

SpotOn’s job manager selects the EC2 spot market and

fault-tolerance mechanism for each job based on the cost-

aware policy in Section 4.2. To execute the policy, the job

manager monitors and records spot prices across EC2 mar-

kets. For each market, the job manager computes the ex-

pected cost of each fault-tolerance mechanism using the his-

torical price data, as well as the the job’s running time and

resource usage vector. Our current prototype assumes a job’s

running time and resource usage vector are accurate and

does not monitor a job’s resource usage while it is running.

In addition, our current prototype does not support “phased”

jobs, where resource usage changes significantly during dif-

ferent phases of execution. After computing the expected

cost for each market and fault-tolerance mechanism, the job

manager selects the least cost fault-tolerance mechanism and

spot market combination to run the job and bids based on the

policies in Section 4.3. The job manager interacts with EC2

to monitor prices, place bids, and fetch instance information

using the EC2 web services APIs. If the current spot price in

the market is above the on-demand price, then the job man-

ager selects the market with the next lowest expected cost.

Once EC2 allocates the spot instance, the job manager

launches a small agent daemon within the instance, which it

uses to remotely execute commands to launch the container

and start the job. To issue a termination warning, EC2 writes

a termination time into the file /spot/termination-time
on the spot instance, which the agent polls every five sec-

onds. Upon receiving a warning, the agent notifies the job

manager, which selects a new instance type using the same

policy as above based on the remaining running time of the

job. One exception is for the replication across spot policy,

which does nothing on each revocation, but rather restarts

a job only after all replicated instances have been revoked.

The job manager computes the remaining run time by sub-

tracting both the completed running time and the overhead of

checkpointing and migration operations. For checkpointing,

the job manager takes a container checkpoint at a periodic

interval using CRIU (Checkpoint in User Space) for LXC

via the agent based on the slack. The job manager takes EBS

snapshots at the same time to checkpoint the disk.

To ensure network connectivity, SpotOn uses Virtual Pri-

vate Clouds (VPC) in EC2 to manage a pool of IP addresses.

The VPC allows the application provider to assign or reas-

sign any IP address from their address pool to any instance.

We assume that batch jobs need not be externally contacted

but that batch jobs may need to access the public Internet.

NAT-based private IP addresses suffice for this purpose and

we assume that the VPC manages a pool of NAT-based pri-

vate IP addresses, one of which is assigned to each SpotOn

container. Upon migration, after stopping the container, the

job manager detaches the container’s IP address from the

original instance and reattaches it to the new instance.

The job manager also detaches the container’s EBS vol-

ume from the original instance and reattaches it on the new

instance. When rolling back to a previous checkpoint, the

job manager reattaches the EBS snapshot of the disk associ-

ated with the last container checkpoint. Once the IP address

and EBS volume are attached, the job manager restarts the

container on the new instance from the last checkpoint.

6. Experimental Evaluation
The goal of our evaluation is to quantify the benefit of Spo-

tOn’s cost-aware selection policy that chooses the fault-

tolerance mechanism and spot market to minimize costs,

while mitigating the impact of revocations on job comple-

tion time. We compare the cost and performance of our pol-
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Figure 6. The time to checkpoint/restore a container is a

function of a job’s memory footprint (top). The I/O through-

put for local disks is an order of magnitude greater than for

remote disks over a range of workloads (bottom).

icy with three other policies: a control policy that always ex-

ecutes jobs on an on-demand instance, our basic policy from

Section 4.1 that always selects the lowest price spot market

using checkpointing and reverts to an on-demand instance

on the first revocation, and a variant of our cost-aware policy

that only uses checkpointing. We conduct experiments using

our prototype and in simulation. The prototype experiments

demonstrate the impact of resource usage and price charac-

teristics on real jobs, while the simulations assess the impact

on performance and cost when using our cost-aware policies

to execute multiple jobs over time with realistic price traces.

We first conduct microbenchmarks to verify the assump-

tions of our models in Section 3 and to seed our simulator.

In particular, we plot LXC checkpoint/restore time in Fig-

ure 6(top) as a function of a job’s memory footprint to verify

relationship between checkpoint/restore overhead and mem-

ory. The graph demonstrates that it is possible to migrate

jobs that use less than roughly 4GB of memory within EC2’s

two-minute warning time. In addition, for Figure 6(bottom)

we use the FIO tool to measure the local versus remote EBS

storage throughput for multiple I/O workloads (in this case

using the SSD variant of EBS); we see that, as expected, the

local I/O throughput is an order of magnitude larger than

the remote EBS throughput, which favors using local stor-

age for I/O-intensive jobs. Our simulator uses Figure 6 to

compute a job’s checkpoint/restore and I/O overhead based

on its resource usage. The simulator also imposes delays of

62 seconds and 224 seconds for booting an on-demand and

spot instance, respectively, based on our experiments.

6.1 Prototype Results

We use our prototype to examine the impact of resource

usage and spot price characteristics on a job’s performance

and cost. To do this, we write a synthetic job emulator

that enables us to set a job duration, working set size, and

CPU:I/O ratio on a reference machine. Using our emulator,

we first create a baseline job that runs for roughly one hour,

has a memory footprint, i.e., working set size, of 8GB, and

has a CPU:I/O ratio of 1:1. That is the job spends half its

time computing and half its time waiting on I/O to complete.

For our baseline experiment, we assume the cost of the

spot instance is 20% of the cost of the on-demand instance

and the revocation rate is 2.4 revocations per day (or 0.1
revocations per hour). We chose 2.4 revocations per day as a

median between the extreme values in Figure 1 and the many

markets that currently experience nearly zero revocations

per day. We execute the job on a r3.2xlarge instance

type, which costs 70¢ per hour, and measure its average

completion time across multiple runs to be 3399s. Figure 7a

shows the job’s completion time (each bar corresponding

to the left y-axis) and its cost (each dot corresponding to

the right y-axis) when running on an on-demand instance

versus running on a spot instance and i) replicating on a

backup on-demand instance, ii) replicating across two spot

instances, and iii) checkpointing every 15 minutes. To fairly

compare the two replication approaches, when replicating on

a backup on-demand instance we assume the job runs at 20%

the performance of the dedicated instance and is charged

20% of the cost of the backup.

Our baseline experiment shows that both forms of repli-

cation and checkpointing reduce the job’s cost by over a

factor of two compared to running on an on-demand in-

stance. However, both replication mechanisms complete the

job sooner than when using checkpointing. The reason is

that the probability of revocation over the job’s running time

is only 10%, so 90% of the time the job will finish with-

out incurring any performance overhead due to a revocation.

In contrast, checkpointing repeatedly incurs the overheads

from Figure 6. In addition, checkpointing requires using a

remote disk to facilitate migration, while replication is ca-

pable of using the local disk. Thus, replication benefits from

the I/O intensity of our baseline job. Note here that the cost

of replicating on a backup server and checkpointing is sim-

ilar, since the backup server doubles the cost (as we fix the

amount we pay for the backup server to be equal to that of

the spot instance), while checkpointing nearly doubles the

running time, which also doubles the cost.

Figure 7 also plots the job’s performance and cost as

its memory footprint and CPU:I/O ratio change. Figure 7b

shows that, as expected, an increase in the memory footprint

causes an increase in the overhead of checkpointing, while

it has no effect on the replication approaches. Figure 7c then

shows that, as the job becomes more I/O-intensive, the job

completion time and cost of checkpointing rise due to the

need to use remote I/O. In contrast, the cost and performance

of the replication approaches remain constant. Note that for

CPU-intensive jobs the cost of replication is slightly more

than the cost of checkpointing, as there is less benefit to
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Figure 8. The impact of varying job duration (a), spot instance revocation rate (b), and on-demand:spot price ratio (c) on our
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using the local disk, but both variants of replication incur

the cost of additional compute resources.

Figure 8 plots the job’s performance and cost for other

relevant parameters, including job length, the revocation

rate, and the ratio of on-demand-to-spot prices. Figure 8a

shows that checkpointing has the lowest cost for short jobs

(< 1 hour), since short jobs require fewer checkpoints and

less overhead. However, the longer the job, the higher check-

pointing’s overhead and cost. While the overhead of both

replication variants also increase with job duration, due to

the increased probability of losing work due to revocation,

the increase is less than with checkpointing.

Figure 8b shows that as the revocation rate increases the

cost and performance of replication becomes worse relative

to checkpointing. Replication is highly sensitive to the revo-

cation rate, since revocation’s result in rolling back to either

the progress of the slower backup server or to the start. In

contrast, checkpointing’s cost and performance is more ro-

bust to an increasing revocation rate, since it only loses at

most the smaller time window between each checkpoint. The

figure also demonstrates the key difference between replica-

tion across spot and replication on on-demand: under a high

revocation rate (24 per day) replication across spot has low

running time, but a high cost (since it reverts to using an

on-demand instance), while replication on on-demand has a

higher running time but a much lower cost, since it always

makes progress. Finally, Figure 8c shows that as spot prices

rise relative to the on-demand price, the replication variant

that uses an on-demand backup server takes longer to com-

plete. This is due to increased multiplexing of jobs on the

backup server at a higher spot price. Since checkpointing

and replication across spot do not use an on-demand backup

server, they are robust to this effect.

Result: The relative performance and cost of each fault-
tolerance mechanism is a complex function of a job’s du-
ration, memory footprint, and CPU:I/O mix, as well as the
spot price’s magnitude and volatility.

6.2 Policies and Cost Analysis

We use our simulator to assess SpotOn’s cost and perfor-

mance over a long period of time; in this case, we consider

the price for all spot instances in the us-east-1a zone over

three months from December 2014 to March 2015. Our sim-

ulator assumes users submit jobs to run on m1.large in-

stance types. Here, we normalize the job’s performance and

cost for each policy to the performance and cost of execut-

ing the job on a dedicated on-demand instance. For the next

set of experiments, we use a baseline job that has a memory

footprint of 7.5GB and a running time of ten hours on an

m1.large on-demand instance, such that we fix the check-

point frequency to be hourly based on the slack.

 338



Figure 9. SpotOn’s cost-aware policy has the lowest cost and similar performance to an on-demand instance.

Figure 10. SpotOn’s cost-aware policy has the lowest cost and similar performance to an on-demand instance. The cost is

substantially lower when jobs’ memory footprint is less than 4GB, since reactive migration is feasible for such jobs.

Figure 11. Job cost (a) and performance (b) for each policy as a function of the revocation rate.

We first evaluate SpotOn’s selection policies as we vary

the duration of the jobs. We simulate the execution of 30

jobs arriving randomly over the three-month time window

and record the cost and completion time for each of our poli-

cies. Figure 9 shows the results normalized to the cost and

completion time when using an on-demand instance. We in-

clude error bars for the 95% confidence intervals over the

30 jobs. The results demonstrate that all cost-aware poli-

cies incur a lower cost than using an on-demand instance

for a similar performance level. In addition, our basic policy,

which always selects the spot instance with the lowest price

without regard to volatility and migrates to an on-demand

instance after the first revocation, has a significantly higher

cost than either of our cost-aware policy variants, which

demonstrates the benefits of considering volatility in addi-

tion to price when choosing a market. Our cost-aware policy

also has a lower cost than a variant that only uses check-

pointing, which demonstrates the benefit of using replica-

tion in addition to checkpointing. However, the cost benefit

of replication decreases as job duration increases, since the

probability of revocation increases (which in turn increases

the overhead of replication). Finally, the completion time for

each approach is similar and near the completion time of the

job on an on-demand instance.

Result: SpotOn’s cost-aware policy reduces the cost of run-
ning a job by as much as 86% compared to running on an
on-demand instance, while increasing the job’s completion
time by only 2%. When compared to a cost-aware policy that
only uses checkpointing, SpotOn reduces cost by up to 74%,
again while increasing job completion time by only 2%.

Next, Figure 10 examines the impact of a job’s memory

footprint on each policy. As before, all policies reduce costs

relative to on-demand with the same level of performance.

In fact, for small jobs less than 4GB, the completion time is

lower than using an on-demand instance. This is due to in-

versions in spot market prices, where the spot price of a par-

ticular instance type drops below the spot price of a smaller

instance type. Since SpotOn always seeks the lowest-cost

resources, it takes advantage of these price inversions. Fig-

ure 10 also shows that jobs with memory footprints that use

less than 4GB incur a much lower cost and have higher per-

formance than jobs that use more memory. This occurs be-

cause reactive migration is feasible in this case, and reactive

migration does not incur the performance overhead of check-

pointing or the cost overhead of replication. When reactive
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migration is not possible after 4GB, the cost-aware and cost-

aware checkpointing policies have a similar cost with per-

formance similar to an on-demand instance.

Result: Using reactive migration for jobs with low memory
footprints substantially decreases costs, in this case by over
a factor of four, due to its low overhead. Our cost-aware
policy uses reactive migration whenever it is feasible.

We next examine the impact of the revocation rate on

cost and performance. Here, we synthetically inject revoca-

tions at specific rates in the price trace to observe their im-

pact. As the revocation rate increases, we see that the cost

savings from our cost-aware policy relative to a cost-aware

policy that only uses checkpointing decreases. This occurs

because the overhead of replication increases under more

volatile market conditions more than the overhead of check-

pointing. However, in each case, our cost-aware policy has

a lower cost than the other policies, since it chooses check-

pointing only when it is the lowest cost option. The increase

in revocation rate also increases job completion times, but in

all cases the completion time remains near the completion

time when using an on-demand instance. As before, price

inversions combined with low revocation rates result in our

cost-aware policy executing jobs faster than when using on-

demand instance in some cases.

Result: The benefit of using replication in addition to check-
pointing decreases as the revocation rate increases. Since
SpotOn’s cost-aware policy chooses checkpointing when it is
the lowest cost option, it results in the lowest cost and high-
est performance across all policies and revocation rates.

Lastly, to get a sense of SpotOn’s potential for savings

with a real workload, we randomly select 1000 tasks from

a Google cluster trace [15] and compare the cost of Spo-

tOn’s greedy cost-aware policy and running the jobs on an

m1.large on-demand instance. Our results show a cost sav-

ings of 91.9% when using SpotOn’s cost-aware policy ver-

sus the m1.large on-demand instance. In addition, the total

running time across all jobs when using SpotOn actually de-
creases by 13.7%. In this case, the decrease occurs because

SpotOn often chooses to execute jobs on spot instance types

that are faster than the m1.large because their spot price is

actually cheaper than an m1.large on-demand instance.

7. Related Work
SpotOn is similar to recent startup companies, such as Clus-

terK [2], that offer low prices by executing batch jobs sub-

mitted by users on spot instances. However, their policies

for handling revocations are not public, so it is unclear if

they restart jobs if spot instances fail, or if they use fault-

tolerance mechanisms to mitigate the impact of revocations.

In recent work, we propose a derivative cloud platform

to transparently mask spot instance revocations from inter-

active applications [16]. The platform runs applications in

nested VMs, which continuously checkpoint their memory

state to a backup server. When notified of an impending re-

vocation, the platform requests an on-demand instance and

uses the backup server to migrate the nested VM within the

two minute period between the revocation warning and spot

instance termination. To ensure transparency for interactive

applications, these migrations must minimize their down-

time, which precludes migrating between regions or using

local storage. By focusing narrowly on batch jobs that permit

some downtime, SpotOn has much more flexibility, enabling

it to chose from multiple fault tolerance mechanisms, exploit

spot markets in multiple regions, and use local storage.

Prior work examines bidding [12, 13, 18, 19, 23–25] and

checkpointing [9, 21, 22] policies for batch jobs to minimize

the cost of spot instances and mitigate the impact of revo-

cations. This work generally evaluates bidding and check-

pointing policies in simulation without considering how job

resource usage affects their overhead (and cost) relative to

other fault-tolerance mechanisms. Instead, the simulations

often assume the overhead is small and do not take into ac-

count the difference between using local versus remote I/O.

SpotOn also differs from the prior work above in its

focus on a service that selects the spot market and fault-

tolerance mechanism with the lowest expected cost. Prior

work [11, 12] focuses on using only one fault-tolerance

mechanism within a single spot market. One exception is

work by Voorsluys and Buyya [21], which considers repli-

cating computation across two spot instances. However,

since they only consider simulated compute-intensive jobs

where the cost of checkpointing is low, they find replica-

tion performs poorly by comparison; our results indicate

replication is effective at current spot prices, especially for

I/O-intensive jobs, since it enables use of local storage.

8. Conclusion
SpotOn optimizes the cost and performance of running non-

interactive batch jobs on the spot market. Our results demon-

strate that the spot market has significant arbitrage oppor-

tunities available, which SpotOn exploits to transparently

lower costs by packaging jobs in containers and using ex-

isting fault-tolerance mechanisms to mitigate the impact of

revocations. Our current work only considers static switch-

ing between individual fault-tolerance mechanisms at revo-

cation boundaries. As part of future work, we plan to ex-

plore multiple extensions, including i) mixed policies that

combine multiple fault-tolerance mechanisms, such as peri-

odically checkpointing the on-demand backup server or any

spot replicas, ii) adaptive policies, which switch mechanisms

as the remaining runtime decreases or spot price character-

istics change, and iii) variable bid policies, which consider

setting the bid price to adjust the revocation probability.
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